organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­acetyl-2,6-bis­­(2-chloro­phen­yl)-3,5-di­methyl­piperidin-4-one

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 15 July 2010; accepted 4 August 2010; online 11 August 2010)

In the title compound, C21H20Cl3NO2, the piperidin-4-one ring adopts a boat conformation. The two 2-chloro­phenyl groups are approximately perpendicular to each other, making a dihedral angle of 74.07 (8)°.

Related literature

For the biological activity of related structures, see: Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981-2985.]); Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188-204.]). For spectroscopic studies of piperidin-4-ones, see: Ravindran et al. (1991[Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1991). J. Org. Chem. 56, 4833-4840.]); Krishnakumar et al. (1996[Krishnakumar, R. & Krishnapillay, M. (1996). Indian J. Chem. Sect. B, 35, 418-425.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For the synthesis of the title compound, see: Ramachandran et al. (2008[Ramachandran, R., Aridoss, G., Velmurugan, D., Kabilan, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o2009-o2010.]); Aridoss et al. (2010[Aridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o1479.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20Cl3NO2

  • Mr = 424.73

  • Monoclinic, P 21 /n

  • a = 11.6295 (4) Å

  • b = 9.6955 (3) Å

  • c = 17.4743 (5) Å

  • β = 90.481 (1)°

  • V = 1970.22 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.22 × 0.16 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.901, Tmax = 0.927

  • 27536 measured reflections

  • 6864 independent reflections

  • 4998 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.141

  • S = 1.01

  • 6864 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,6-Disubstituted piperidones and their N-substituted compounds are of great interest due to their significant pharmacological properties (Parthiban et al., 2009; Aridoss et al., 2007). The introduction of electron withdrawing groups such as –CHO, COCH3, COPh, NO, etc., at the ring nitrogen cause a major change in ring conformation (Ravindran et al., 1991; Krishnakumar et al., 1996). Hence, we introduced the chloroacetyl (COCH2Cl) group into the piperidine ring in order to analyse the ring conformation through a single-crystal X-ray diffraction study.

In the molecular structure (C21H20Cl2NO2), the piperidine ring adopts a boat conformation with puckering parameters (Cremer & Pople, 1975) as follows: Total puckering amplitude, QT=0.6960 (15)Å and phase angle θ=85.52 (12)°. The smallest displacement asymmetry parameters (Nardelli, 1983) q1 and q2 are 0.6939 (15) Å and 0.0544 (15) Å, respectively. The dihedral angle between the two o-chlorophenyl rings is 74.07 (8) °.

Related literature top

For the biological activity of related structures, see: Parthiban et al. (2009); Aridoss et al. (2007). For spectroscopic studies of piperidin-4-ones, see: Ravindran et al. (1991); Krishnakumar et al. (1996). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For the synthesis of the title compound, see: Ramachandran et al. (2008); Aridoss et al. (2010).

Experimental top

The title compound was obtained by adopting an earlier method (Ramachandran et al. (2008); Aridoss et al., 2010). To a well stirred solution of 3,5-dimethyl-2,6-bis(o-chloroyphenyl)piperidin-4-one (2 g, 4.71 mmol) and triethylamine (1.42 g, 14.13 mmol) in freshly distilled benzene (50 ml), chloroacetyl chloride (0.79 g, 7.06 mmol) in benzene (10 ml) was added drop-wise through the addition funnel over about half an hour. Stirring was continued until the completion of reaction. The reaction mixture was then poured into water and extracted with DCM. The solvent was removed under reduced pressure. The crude sample was purified by column chromatography. Upon recrystallization from absolute ethanol this afforded fine white crystals suitable for X-ray diffraction analysis.

Refinement top

H-atoms were positioned and refined using a riding model, with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H)=1.2Ueq(C) or 1.5eq(methyl C).

Structure description top

2,6-Disubstituted piperidones and their N-substituted compounds are of great interest due to their significant pharmacological properties (Parthiban et al., 2009; Aridoss et al., 2007). The introduction of electron withdrawing groups such as –CHO, COCH3, COPh, NO, etc., at the ring nitrogen cause a major change in ring conformation (Ravindran et al., 1991; Krishnakumar et al., 1996). Hence, we introduced the chloroacetyl (COCH2Cl) group into the piperidine ring in order to analyse the ring conformation through a single-crystal X-ray diffraction study.

In the molecular structure (C21H20Cl2NO2), the piperidine ring adopts a boat conformation with puckering parameters (Cremer & Pople, 1975) as follows: Total puckering amplitude, QT=0.6960 (15)Å and phase angle θ=85.52 (12)°. The smallest displacement asymmetry parameters (Nardelli, 1983) q1 and q2 are 0.6939 (15) Å and 0.0544 (15) Å, respectively. The dihedral angle between the two o-chlorophenyl rings is 74.07 (8) °.

For the biological activity of related structures, see: Parthiban et al. (2009); Aridoss et al. (2007). For spectroscopic studies of piperidin-4-ones, see: Ravindran et al. (1991); Krishnakumar et al. (1996). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For the synthesis of the title compound, see: Ramachandran et al. (2008); Aridoss et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 50% probability displacement ellipsoids.
1-Chloroacetyl-2,6-bis(2-chlorophenyl)-3,5-dimethylpiperidin-4-one top
Crystal data top
C21H20Cl3NO2F(000) = 880
Mr = 424.73Dx = 1.432 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5467 reflections
a = 11.6295 (4) Åθ = 2.1–25.0°
b = 9.6955 (3) ŵ = 0.48 mm1
c = 17.4743 (5) ÅT = 293 K
β = 90.481 (1)°Prism, colourless
V = 1970.22 (11) Å30.22 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6864 independent reflections
Radiation source: fine-focus sealed tube4998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scanθmax = 32.1°, θmin = 2.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1717
Tmin = 0.901, Tmax = 0.927k = 1414
27536 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.5226P]
where P = (Fo2 + 2Fc2)/3
6864 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C21H20Cl3NO2V = 1970.22 (11) Å3
Mr = 424.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6295 (4) ŵ = 0.48 mm1
b = 9.6955 (3) ÅT = 293 K
c = 17.4743 (5) Å0.22 × 0.16 × 0.16 mm
β = 90.481 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6864 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4998 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.927Rint = 0.023
27536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
6864 reflectionsΔρmin = 0.31 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85514 (12)0.37161 (13)0.00740 (8)0.0341 (3)
H1A0.87460.46920.00040.041*
C20.96025 (12)0.30363 (15)0.04343 (8)0.0385 (3)
H2A1.02370.30320.00620.046*
C30.93368 (13)0.15720 (15)0.06701 (9)0.0415 (3)
C40.80789 (13)0.11575 (13)0.07058 (8)0.0368 (3)
H4A0.78390.09810.01780.044*
C50.73061 (12)0.23387 (13)0.10157 (7)0.0340 (2)
H5A0.74560.24370.15640.041*
C60.82292 (12)0.31664 (14)0.07135 (7)0.0346 (3)
C70.73896 (13)0.37879 (15)0.11624 (8)0.0393 (3)
C80.70953 (16)0.32934 (19)0.18766 (9)0.0505 (4)
H8A0.65190.37240.21550.061*
C90.76589 (18)0.2157 (2)0.21762 (9)0.0562 (4)
H9A0.74570.18100.26530.067*
C100.85181 (17)0.15487 (18)0.17638 (10)0.0529 (4)
H10A0.89110.07940.19650.063*
C110.88047 (14)0.20513 (16)0.10491 (9)0.0432 (3)
H11A0.94000.16330.07830.052*
C120.99879 (15)0.37953 (19)0.11617 (10)0.0494 (4)
H12A1.06470.33390.13710.074*
H12B1.01840.47310.10360.074*
H12C0.93730.37900.15320.074*
C130.79149 (17)0.01856 (16)0.11449 (11)0.0516 (4)
H13A0.84090.08820.09310.077*
H13B0.81040.00440.16730.077*
H13C0.71290.04780.11080.077*
C140.60451 (13)0.19672 (14)0.09241 (8)0.0380 (3)
C150.53718 (15)0.14574 (17)0.15177 (10)0.0491 (4)
C160.42350 (17)0.1070 (2)0.14119 (13)0.0619 (5)
H16A0.38090.07020.18160.074*
C170.37424 (16)0.12352 (19)0.07036 (14)0.0614 (5)
H17A0.29780.09890.06300.074*
C180.43777 (16)0.17623 (19)0.01064 (12)0.0548 (4)
H18A0.40410.18890.03690.066*
C190.55201 (14)0.21042 (16)0.02132 (9)0.0432 (3)
H19A0.59490.24340.01990.052*
C200.73202 (12)0.49115 (14)0.09783 (8)0.0379 (3)
C210.63849 (16)0.48474 (18)0.15890 (10)0.0514 (4)
H21A0.57010.44340.13740.062*
H21B0.66400.42650.20060.062*
O11.01004 (12)0.07846 (14)0.08337 (10)0.0692 (4)
O20.77569 (11)0.59995 (11)0.07971 (7)0.0528 (3)
N10.75946 (10)0.36719 (11)0.06397 (6)0.0326 (2)
Cl10.66924 (4)0.52622 (4)0.08431 (3)0.05574 (13)
Cl20.59251 (5)0.13268 (7)0.24418 (3)0.07505 (18)
Cl30.60408 (4)0.64954 (5)0.19502 (3)0.06205 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (6)0.0286 (6)0.0353 (6)0.0014 (5)0.0026 (5)0.0020 (4)
C20.0353 (6)0.0382 (7)0.0421 (7)0.0015 (5)0.0007 (5)0.0047 (5)
C30.0434 (7)0.0362 (7)0.0452 (7)0.0071 (6)0.0061 (6)0.0042 (5)
C40.0440 (7)0.0285 (6)0.0379 (6)0.0028 (5)0.0056 (5)0.0003 (5)
C50.0386 (6)0.0313 (6)0.0320 (6)0.0013 (5)0.0025 (5)0.0023 (4)
C60.0407 (6)0.0305 (6)0.0325 (6)0.0025 (5)0.0022 (5)0.0009 (5)
C70.0441 (7)0.0364 (6)0.0373 (6)0.0048 (5)0.0030 (5)0.0051 (5)
C80.0543 (9)0.0583 (9)0.0390 (7)0.0055 (7)0.0056 (7)0.0077 (7)
C90.0723 (11)0.0619 (10)0.0345 (7)0.0008 (9)0.0044 (7)0.0058 (7)
C100.0677 (11)0.0490 (9)0.0419 (8)0.0094 (8)0.0027 (7)0.0106 (6)
C110.0509 (8)0.0402 (7)0.0386 (7)0.0104 (6)0.0005 (6)0.0041 (6)
C120.0462 (8)0.0539 (9)0.0482 (8)0.0054 (7)0.0069 (7)0.0089 (7)
C130.0646 (10)0.0333 (7)0.0571 (9)0.0017 (7)0.0077 (8)0.0078 (6)
C140.0404 (7)0.0328 (6)0.0410 (7)0.0012 (5)0.0011 (5)0.0040 (5)
C150.0493 (8)0.0474 (8)0.0504 (8)0.0004 (7)0.0060 (7)0.0089 (7)
C160.0525 (10)0.0523 (10)0.0804 (13)0.0082 (8)0.0200 (9)0.0034 (9)
C170.0431 (9)0.0483 (9)0.0929 (15)0.0075 (7)0.0031 (9)0.0139 (9)
C180.0503 (9)0.0458 (8)0.0686 (11)0.0028 (7)0.0156 (8)0.0093 (8)
C190.0464 (8)0.0377 (7)0.0455 (7)0.0033 (6)0.0074 (6)0.0003 (6)
C200.0412 (7)0.0346 (6)0.0379 (6)0.0049 (5)0.0015 (5)0.0057 (5)
C210.0559 (9)0.0466 (8)0.0516 (9)0.0061 (7)0.0126 (7)0.0126 (7)
O10.0535 (7)0.0504 (7)0.1039 (12)0.0162 (6)0.0167 (7)0.0077 (7)
O20.0664 (8)0.0322 (5)0.0596 (7)0.0005 (5)0.0111 (6)0.0084 (5)
N10.0375 (5)0.0277 (5)0.0325 (5)0.0015 (4)0.0017 (4)0.0018 (4)
Cl10.0653 (3)0.0465 (2)0.0555 (2)0.02331 (18)0.00334 (19)0.00359 (17)
Cl20.0761 (3)0.1018 (4)0.0471 (2)0.0034 (3)0.0109 (2)0.0279 (2)
Cl30.0654 (3)0.0601 (3)0.0607 (3)0.0222 (2)0.0028 (2)0.0202 (2)
Geometric parameters (Å, º) top
C1—N11.4828 (17)C11—H11A0.9300
C1—C61.5253 (18)C12—H12A0.9600
C1—C21.5291 (19)C12—H12B0.9600
C1—H1A0.9800C12—H12C0.9600
C2—C31.510 (2)C13—H13A0.9600
C2—C121.539 (2)C13—H13B0.9600
C2—H2A0.9800C13—H13C0.9600
C3—O11.2072 (18)C14—C151.386 (2)
C3—C41.518 (2)C14—C191.395 (2)
C4—C131.523 (2)C15—C161.388 (3)
C4—C51.5506 (19)C15—Cl21.7480 (19)
C4—H4A0.9800C16—C171.378 (3)
C5—N11.4871 (17)C16—H16A0.9300
C5—C141.520 (2)C17—C181.372 (3)
C5—H5A0.9800C17—H17A0.9300
C6—C71.3946 (19)C18—C191.383 (2)
C6—C111.3979 (19)C18—H18A0.9300
C7—C81.383 (2)C19—H19A0.9300
C7—Cl11.7333 (15)C20—O21.2117 (19)
C8—C91.382 (3)C20—N11.3760 (16)
C8—H8A0.9300C20—C211.519 (2)
C9—C101.370 (3)C21—Cl31.7628 (16)
C9—H9A0.9300C21—H21A0.9700
C10—C111.384 (2)C21—H21B0.9700
C10—H10A0.9300
N1—C1—C6113.75 (11)C6—C11—H11A118.9
N1—C1—C2108.12 (11)C2—C12—H12A109.5
C6—C1—C2115.10 (11)C2—C12—H12B109.5
N1—C1—H1A106.4H12A—C12—H12B109.5
C6—C1—H1A106.4C2—C12—H12C109.5
C2—C1—H1A106.4H12A—C12—H12C109.5
C3—C2—C1110.81 (12)H12B—C12—H12C109.5
C3—C2—C12106.54 (13)C4—C13—H13A109.5
C1—C2—C12111.93 (12)C4—C13—H13B109.5
C3—C2—H2A109.2H13A—C13—H13B109.5
C1—C2—H2A109.2C4—C13—H13C109.5
C12—C2—H2A109.2H13A—C13—H13C109.5
O1—C3—C2120.67 (15)H13B—C13—H13C109.5
O1—C3—C4122.25 (15)C15—C14—C19116.86 (14)
C2—C3—C4117.08 (12)C15—C14—C5123.05 (13)
C3—C4—C13111.32 (13)C19—C14—C5120.08 (13)
C3—C4—C5111.98 (11)C14—C15—C16121.98 (17)
C13—C4—C5112.70 (13)C14—C15—Cl2120.50 (13)
C3—C4—H4A106.8C16—C15—Cl2117.50 (14)
C13—C4—H4A106.8C17—C16—C15119.46 (18)
C5—C4—H4A106.8C17—C16—H16A120.3
N1—C5—C14111.94 (10)C15—C16—H16A120.3
N1—C5—C4111.08 (11)C18—C17—C16120.09 (17)
C14—C5—C4110.19 (11)C18—C17—H17A120.0
N1—C5—H5A107.8C16—C17—H17A120.0
C14—C5—H5A107.8C17—C18—C19119.88 (18)
C4—C5—H5A107.8C17—C18—H18A120.1
C7—C6—C11115.67 (13)C19—C18—H18A120.1
C7—C6—C1122.34 (12)C18—C19—C14121.68 (16)
C11—C6—C1121.90 (12)C18—C19—H19A119.2
C8—C7—C6122.53 (14)C14—C19—H19A119.2
C8—C7—Cl1117.25 (12)O2—C20—N1123.57 (13)
C6—C7—Cl1120.20 (11)O2—C20—C21121.02 (13)
C9—C8—C7119.87 (15)N1—C20—C21115.37 (13)
C9—C8—H8A120.1C20—C21—Cl3111.94 (12)
C7—C8—H8A120.1C20—C21—H21A109.2
C10—C9—C8119.31 (15)Cl3—C21—H21A109.2
C10—C9—H9A120.3C20—C21—H21B109.2
C8—C9—H9A120.3Cl3—C21—H21B109.2
C9—C10—C11120.33 (16)H21A—C21—H21B107.9
C9—C10—H10A119.8C20—N1—C1115.56 (11)
C11—C10—H10A119.8C20—N1—C5121.24 (11)
C10—C11—C6122.20 (15)C1—N1—C5119.01 (10)
C10—C11—H11A118.9
N1—C1—C2—C358.03 (14)C1—C6—C11—C10179.89 (15)
C6—C1—C2—C370.37 (15)N1—C5—C14—C15136.19 (14)
N1—C1—C2—C1260.74 (15)C4—C5—C14—C1599.67 (16)
C6—C1—C2—C12170.85 (12)N1—C5—C14—C1945.29 (17)
C1—C2—C3—O1166.27 (15)C4—C5—C14—C1978.86 (16)
C12—C2—C3—O171.75 (19)C19—C14—C15—C161.4 (2)
C1—C2—C3—C414.92 (17)C5—C14—C15—C16177.20 (16)
C12—C2—C3—C4107.06 (14)C19—C14—C15—Cl2176.79 (12)
O1—C3—C4—C1313.9 (2)C5—C14—C15—Cl24.6 (2)
C2—C3—C4—C13164.91 (13)C14—C15—C16—C172.2 (3)
O1—C3—C4—C5141.05 (16)Cl2—C15—C16—C17176.06 (15)
C2—C3—C4—C537.74 (17)C15—C16—C17—C180.8 (3)
C3—C4—C5—N146.40 (15)C16—C17—C18—C191.2 (3)
C13—C4—C5—N1172.84 (12)C17—C18—C19—C142.0 (3)
C3—C4—C5—C14171.04 (11)C15—C14—C19—C180.7 (2)
C13—C4—C5—C1462.52 (15)C5—C14—C19—C18179.31 (14)
N1—C1—C6—C762.84 (17)O2—C20—C21—Cl31.2 (2)
C2—C1—C6—C7171.62 (13)N1—C20—C21—Cl3176.76 (11)
N1—C1—C6—C11120.85 (14)O2—C20—N1—C15.4 (2)
C2—C1—C6—C114.69 (19)C21—C20—N1—C1176.75 (13)
C11—C6—C7—C83.4 (2)O2—C20—N1—C5162.10 (14)
C1—C6—C7—C8179.97 (14)C21—C20—N1—C520.01 (19)
C11—C6—C7—Cl1174.97 (12)C6—C1—N1—C20123.99 (12)
C1—C6—C7—Cl11.55 (19)C2—C1—N1—C20106.85 (13)
C6—C7—C8—C91.4 (3)C6—C1—N1—C578.72 (14)
Cl1—C7—C8—C9177.11 (14)C2—C1—N1—C550.45 (14)
C7—C8—C9—C101.0 (3)C14—C5—N1—C2078.22 (15)
C8—C9—C10—C111.1 (3)C4—C5—N1—C20158.14 (12)
C9—C10—C11—C61.2 (3)C14—C5—N1—C1125.81 (12)
C7—C6—C11—C103.4 (2)C4—C5—N1—C12.17 (16)

Experimental details

Crystal data
Chemical formulaC21H20Cl3NO2
Mr424.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.6295 (4), 9.6955 (3), 17.4743 (5)
β (°) 90.481 (1)
V3)1970.22 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.22 × 0.16 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.901, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
27536, 6864, 4998
Rint0.023
(sin θ/λ)max1)0.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.141, 1.01
No. of reflections6864
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.31

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

RR and YTJ are grateful for the support provided by the Industrial Technology Development Program–Ministry of Knowledge Economy of the Korean Government and 2010 Post-Doc. Research Program funded by Pukyong National University. The authors are thankful to the SAIF, Indian Institute of Technology, Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188–204.  Web of Science CrossRef CAS Google Scholar
First citationAridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o1479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrishnakumar, R. & Krishnapillay, M. (1996). Indian J. Chem. Sect. B, 35, 418–425.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRamachandran, R., Aridoss, G., Velmurugan, D., Kabilan, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o2009–o2010.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1991). J. Org. Chem. 56, 4833–4840.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds