organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(3-Carb­­oxy-4-hy­dr­oxy­phen­yl)iminiometh­yl]-4-chloro­phenolate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 August 2010; accepted 18 August 2010; online 28 August 2010)

The title Schiff base compound, C14H10ClNO4, has been synthesized by the reaction of 5-amino-2-hy­droxy­benzoic acid and 5-chloro-2-hy­droxy­benzaldehyde. The mol­ecule is a zwitterion in the crystal, with the phenolic hy­droxy group deprotonated and the imine N atom protonated. It adopts an E configuration about the central C=N double bond. The dihedral angle between the two benzene rings is 3.83 (7)°. Intra­molecular N—H⋯O and O—H⋯O hydrogen bonding generates S(6) ring motifs. In the crystal, mol­ecules are connected by inter­molecular O—H⋯O and C—H⋯Cl hydrogen bonds, forming a supra­molecular chain.

Related literature

For applications of Schiff bases, see: Youssef et al. (2009[Youssef, N. S., El-Zahany, E. A., Barsoum, B. N. & El-Seidy, A. M. A. (2009). Transition Met. Chem. 34, 905-914.]); Salih & Hamdi (2008[Salih, I. & Hamdi, T. (2008). J. Coord. Chem. 62, 456-464.]); Belaid et al. (2006[Belaid, S., Djebbar, S., Benali-Baitich, O., Khan, M. & Bouet, G. (2006). C. R. Chim. 10, 568-572.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClNO4

  • Mr = 291.68

  • Monoclinic, P 21 /c

  • a = 7.1504 (6) Å

  • b = 10.9059 (10) Å

  • c = 15.8015 (18) Å

  • β = 98.396 (2)°

  • V = 1219.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.36 × 0.08 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.984

  • 24711 measured reflections

  • 3548 independent reflections

  • 2839 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.03

  • 3548 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O4i 0.97 1.56 2.5220 (16) 173
N1—H1N1⋯O4 0.85 (2) 1.78 (2) 2.5217 (17) 144.2 (19)
O1—H1O1⋯O2 0.96 (2) 1.67 (2) 2.5901 (17) 158 (2)
C7—H7A⋯Cl1ii 0.93 2.81 3.6603 (15) 152
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have received much attention, mainly because of their extensive application in the field of synthesis and catalysis (Youssef et al., 2009; Salih & Hamdi, 2008). Schiff bases derived from ortho-phenylenediamine are of particular interests because of the proximity of the nitrogen atoms, which permits their simultaneous coordination to the same metal cation, leading to more stable compounds (Belaid et al., 2006). Schiff base ligands are an important class of compounds, possessing a wide spectrum of biological and pharmacological activities such as antibacterial and antifungal (Karthikeyan et al., 2006) properties. Keeping in view of the importance of the Schiff bases, the title compound (I) was synthesized.

The molecule of (I), (Fig. 1), crystallizes in a zwitterionic form with cationic iminium and anionic phenolate i.e. the phenol -OH group was deprotonated and the imine N atom was protonated. (I) exists in a trans configuration about the C7N1 bond [1.3061 (19) Å] with the torsion angle C6-C7-N1-C8 = 178.05 (13)°. The dihedral angle between the two phenyl (C1–C6)/(C8–C13) rings is 3.83 (7)°.

In the crystal structure (Fig. 2), intramolecular N1—H1N1···O4 and O1—H1O1···O2 hydrogen bonding generates an S(6) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by intermolecular O3—H1O3···O4 and C7—H7A···Cl1 (Table 1) hydrogen bonds, to form one-dimensional chains.

Related literature top

For applications of Schiff bases, see: Youssef et al. (2009); Salih & Hamdi (2008); Belaid et al. (2006); Karthikeyan et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a stirred solution of 5-amino -2- hydroxybenzoic acid (0.40 g, 2.9 mmol) in methanol was added 5-chloro-2-hydroxybenzaldehyde (0.40 g, 2.5 mmol). The reaction was refluxed for 1 h at 70°C after which the precipitate formed was filtered and recrystallized from dichloromethane and methanol (1:1). Orange needle-shaped single crystals suitable for X-ray structure determination were formed after slow evaporation of solvent at room temperature.

Refinement top

Atoms H1N1 and H1O1 were located from a difference Fourier map and were refined freely [N–H= 0.85 (2) Å and O–H= 0.96 (3) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C, O).

Structure description top

Schiff bases have received much attention, mainly because of their extensive application in the field of synthesis and catalysis (Youssef et al., 2009; Salih & Hamdi, 2008). Schiff bases derived from ortho-phenylenediamine are of particular interests because of the proximity of the nitrogen atoms, which permits their simultaneous coordination to the same metal cation, leading to more stable compounds (Belaid et al., 2006). Schiff base ligands are an important class of compounds, possessing a wide spectrum of biological and pharmacological activities such as antibacterial and antifungal (Karthikeyan et al., 2006) properties. Keeping in view of the importance of the Schiff bases, the title compound (I) was synthesized.

The molecule of (I), (Fig. 1), crystallizes in a zwitterionic form with cationic iminium and anionic phenolate i.e. the phenol -OH group was deprotonated and the imine N atom was protonated. (I) exists in a trans configuration about the C7N1 bond [1.3061 (19) Å] with the torsion angle C6-C7-N1-C8 = 178.05 (13)°. The dihedral angle between the two phenyl (C1–C6)/(C8–C13) rings is 3.83 (7)°.

In the crystal structure (Fig. 2), intramolecular N1—H1N1···O4 and O1—H1O1···O2 hydrogen bonding generates an S(6) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by intermolecular O3—H1O3···O4 and C7—H7A···Cl1 (Table 1) hydrogen bonds, to form one-dimensional chains.

For applications of Schiff bases, see: Youssef et al. (2009); Salih & Hamdi (2008); Belaid et al. (2006); Karthikeyan et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. One-dimensional molecular chain generated by O—H···O and C—H···Cl hydrogen bonds.
2-[(E)-(3-Carboxy-4-hydroxyphenyl)iminiomethyl]-4-chlorophenolate top
Crystal data top
C14H10ClNO4F(000) = 600
Mr = 291.68Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5212 reflections
a = 7.1504 (6) Åθ = 2.9–29.8°
b = 10.9059 (10) ŵ = 0.33 mm1
c = 15.8015 (18) ÅT = 100 K
β = 98.396 (2)°Needle, orange
V = 1219.0 (2) Å30.36 × 0.08 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3548 independent reflections
Radiation source: fine-focus sealed tube2839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.892, Tmax = 0.984k = 1515
24711 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.5702P]
where P = (Fo2 + 2Fc2)/3
3548 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H10ClNO4V = 1219.0 (2) Å3
Mr = 291.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1504 (6) ŵ = 0.33 mm1
b = 10.9059 (10) ÅT = 100 K
c = 15.8015 (18) Å0.36 × 0.08 × 0.05 mm
β = 98.396 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2839 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.984Rint = 0.048
24711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3548 reflectionsΔρmin = 0.26 e Å3
189 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12582 (5)0.88201 (4)0.28298 (2)0.02899 (12)
O10.20080 (17)0.01744 (10)0.13325 (8)0.0279 (3)
O20.37683 (16)0.09144 (10)0.27923 (7)0.0273 (3)
O30.44612 (16)0.29081 (10)0.29829 (7)0.0267 (3)
H1O30.50540.26150.35360.040*
O40.38530 (16)0.70448 (10)0.06318 (7)0.0259 (2)
N10.26920 (16)0.49306 (11)0.01711 (8)0.0191 (2)
C10.3279 (2)0.74509 (13)0.01393 (9)0.0195 (3)
C20.3424 (2)0.86975 (14)0.03574 (10)0.0217 (3)
H2A0.39360.92540.00590.026*
C30.2821 (2)0.91040 (14)0.11739 (10)0.0218 (3)
H3A0.29310.99290.13080.026*
C40.20390 (19)0.82731 (14)0.18053 (9)0.0203 (3)
C50.18541 (19)0.70552 (14)0.16270 (9)0.0194 (3)
H5A0.13260.65170.20530.023*
C60.24713 (18)0.66229 (13)0.07925 (9)0.0173 (3)
C70.22361 (19)0.53618 (13)0.06027 (9)0.0190 (3)
H7A0.17460.48320.10400.023*
C80.24807 (19)0.37125 (13)0.04491 (9)0.0187 (3)
C90.1617 (2)0.27914 (13)0.00918 (9)0.0208 (3)
H9A0.11560.29680.06600.025*
C100.1456 (2)0.16216 (14)0.02226 (10)0.0222 (3)
H10A0.08700.10130.01340.027*
C110.2162 (2)0.13432 (13)0.10694 (10)0.0209 (3)
C120.30148 (19)0.22675 (13)0.16180 (9)0.0194 (3)
C130.31643 (19)0.34519 (13)0.12975 (9)0.0186 (3)
H13A0.37250.40680.16540.022*
C140.3777 (2)0.19733 (14)0.25151 (10)0.0217 (3)
H1N10.322 (3)0.5468 (19)0.0518 (13)0.029 (5)*
H1O10.268 (3)0.024 (2)0.1903 (16)0.052 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02706 (19)0.0374 (2)0.02110 (19)0.00013 (15)0.00132 (13)0.00998 (15)
O10.0366 (6)0.0206 (5)0.0258 (6)0.0036 (4)0.0025 (5)0.0019 (4)
O20.0324 (6)0.0254 (6)0.0238 (6)0.0010 (4)0.0030 (5)0.0057 (4)
O30.0361 (6)0.0245 (5)0.0177 (5)0.0030 (4)0.0028 (4)0.0001 (4)
O40.0354 (6)0.0273 (5)0.0138 (5)0.0058 (4)0.0012 (4)0.0009 (4)
N10.0199 (5)0.0197 (6)0.0175 (6)0.0016 (4)0.0018 (4)0.0005 (5)
C10.0199 (6)0.0228 (7)0.0161 (6)0.0013 (5)0.0036 (5)0.0005 (5)
C20.0230 (6)0.0214 (7)0.0209 (7)0.0046 (5)0.0038 (5)0.0012 (5)
C30.0205 (6)0.0216 (7)0.0241 (7)0.0014 (5)0.0058 (5)0.0019 (5)
C40.0174 (6)0.0252 (7)0.0182 (7)0.0017 (5)0.0026 (5)0.0047 (5)
C50.0169 (6)0.0249 (7)0.0165 (7)0.0011 (5)0.0024 (5)0.0006 (5)
C60.0163 (6)0.0198 (6)0.0165 (6)0.0007 (5)0.0043 (5)0.0001 (5)
C70.0176 (6)0.0218 (6)0.0177 (7)0.0003 (5)0.0029 (5)0.0013 (5)
C80.0172 (6)0.0204 (6)0.0188 (7)0.0019 (5)0.0038 (5)0.0011 (5)
C90.0209 (6)0.0223 (7)0.0184 (7)0.0005 (5)0.0002 (5)0.0010 (5)
C100.0217 (6)0.0208 (7)0.0234 (7)0.0011 (5)0.0015 (5)0.0037 (5)
C110.0198 (6)0.0213 (7)0.0222 (7)0.0005 (5)0.0045 (5)0.0004 (5)
C120.0175 (6)0.0227 (7)0.0186 (7)0.0018 (5)0.0043 (5)0.0005 (5)
C130.0178 (6)0.0208 (6)0.0174 (7)0.0003 (5)0.0032 (5)0.0018 (5)
C140.0208 (6)0.0251 (7)0.0197 (7)0.0025 (5)0.0047 (5)0.0010 (5)
Geometric parameters (Å, º) top
Cl1—C41.7390 (15)C4—C51.368 (2)
O1—C111.3502 (18)C5—C61.4093 (19)
O1—H1O10.96 (3)C5—H5A0.9300
O2—C141.2355 (19)C6—C71.423 (2)
O3—C141.3113 (19)C7—H7A0.9300
O3—H1O30.9687C8—C131.3876 (19)
O4—C11.3051 (17)C8—C91.402 (2)
N1—C71.3061 (19)C9—C101.380 (2)
N1—C81.4143 (18)C9—H9A0.9300
N1—H1N10.85 (2)C10—C111.393 (2)
C1—C21.410 (2)C10—H10A0.9300
C1—C61.4284 (19)C11—C121.409 (2)
C2—C31.373 (2)C12—C131.397 (2)
C2—H2A0.9300C12—C141.478 (2)
C3—C41.402 (2)C13—H13A0.9300
C3—H3A0.9300
C11—O1—H1O199.8 (15)N1—C7—H7A119.2
C14—O3—H1O3109.3C6—C7—H7A119.2
C7—N1—C8127.27 (13)C13—C8—C9120.25 (13)
C7—N1—H1N1112.4 (14)C13—C8—N1117.00 (13)
C8—N1—H1N1120.2 (14)C9—C8—N1122.76 (13)
O4—C1—C2122.09 (13)C10—C9—C8119.69 (14)
O4—C1—C6119.93 (13)C10—C9—H9A120.2
C2—C1—C6117.99 (13)C8—C9—H9A120.2
C3—C2—C1121.13 (14)C9—C10—C11120.64 (14)
C3—C2—H2A119.4C9—C10—H10A119.7
C1—C2—H2A119.4C11—C10—H10A119.7
C2—C3—C4119.86 (14)O1—C11—C10117.85 (13)
C2—C3—H3A120.1O1—C11—C12122.24 (14)
C4—C3—H3A120.1C10—C11—C12119.91 (14)
C5—C4—C3121.42 (14)C13—C12—C11119.18 (13)
C5—C4—Cl1119.81 (12)C13—C12—C14120.76 (13)
C3—C4—Cl1118.76 (11)C11—C12—C14120.04 (13)
C4—C5—C6119.40 (13)C8—C13—C12120.31 (13)
C4—C5—H5A120.3C8—C13—H13A119.8
C6—C5—H5A120.3C12—C13—H13A119.8
C5—C6—C7119.34 (13)O2—C14—O3123.20 (14)
C5—C6—C1120.20 (13)O2—C14—C12121.53 (14)
C7—C6—C1120.44 (13)O3—C14—C12115.27 (13)
N1—C7—C6121.62 (13)
O4—C1—C2—C3179.64 (13)C13—C8—C9—C100.2 (2)
C6—C1—C2—C30.5 (2)N1—C8—C9—C10179.90 (13)
C1—C2—C3—C40.3 (2)C8—C9—C10—C110.8 (2)
C2—C3—C4—C50.2 (2)C9—C10—C11—O1178.20 (13)
C2—C3—C4—Cl1179.12 (11)C9—C10—C11—C121.4 (2)
C3—C4—C5—C60.4 (2)O1—C11—C12—C13178.57 (13)
Cl1—C4—C5—C6179.28 (10)C10—C11—C12—C131.0 (2)
C4—C5—C6—C7178.48 (13)O1—C11—C12—C140.1 (2)
C4—C5—C6—C10.1 (2)C10—C11—C12—C14179.59 (13)
O4—C1—C6—C5179.82 (13)C9—C8—C13—C120.6 (2)
C2—C1—C6—C50.3 (2)N1—C8—C13—C12179.70 (12)
O4—C1—C6—C71.8 (2)C11—C12—C13—C80.0 (2)
C2—C1—C6—C7178.04 (13)C14—C12—C13—C8178.60 (13)
C8—N1—C7—C6178.05 (13)C13—C12—C14—O2175.13 (14)
C5—C6—C7—N1176.28 (13)C11—C12—C14—O23.5 (2)
C1—C6—C7—N12.1 (2)C13—C12—C14—O34.4 (2)
C7—N1—C8—C13176.56 (13)C11—C12—C14—O3176.96 (13)
C7—N1—C8—C93.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O4i0.971.562.5220 (16)173
N1—H1N1···O40.85 (2)1.78 (2)2.5217 (17)144.2 (19)
O1—H1O1···O20.96 (2)1.67 (2)2.5901 (17)158 (2)
C7—H7A···Cl1ii0.932.813.6603 (15)152
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10ClNO4
Mr291.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1504 (6), 10.9059 (10), 15.8015 (18)
β (°) 98.396 (2)
V3)1219.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.36 × 0.08 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.892, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
24711, 3548, 2839
Rint0.048
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.03
No. of reflections3548
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O4i0.97001.56002.5220 (16)173.00
N1—H1N1···O40.85 (2)1.78 (2)2.5217 (17)144.2 (19)
O1—H1O1···O20.96 (2)1.67 (2)2.5901 (17)158 (2)
C7—H7A···Cl1ii0.93002.81003.6603 (15)152.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: sgteoh@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AMF, TSG and HO thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815002). AMF thanks the Libyan Government for providing a scholarship. MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBelaid, S., Djebbar, S., Benali-Baitich, O., Khan, M. & Bouet, G. (2006). C. R. Chim. 10, 568–572.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalih, I. & Hamdi, T. (2008). J. Coord. Chem. 62, 456–464.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoussef, N. S., El-Zahany, E. A., Barsoum, B. N. & El-Seidy, A. M. A. (2009). Transition Met. Chem. 34, 905–914.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds