organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­droxy-3-methoxybenzaldehyde 2,4-di­nitro­phenylhydrazone pyridine monosolvate

aCollege of Chemical Engineering and Environment, North University of China, Taiyuan 030051, People's Republic of China
*Correspondence e-mail: zhaolinxiu126@126.com

(Received 25 July 2010; accepted 28 July 2010; online 4 August 2010)

The Schiff base molecule of the title compound, C14H12N4O6·C5H5N, was obtained from the condensation reaction of 2-hy­droxy-3-meth­oxy­benzaldehyde and 2,4-dinitro­phenyl­hydrazine. The C=N bond of the Schiff base has a trans arrangement and the dihedral angle between the two benzene rings is 3.49 (10)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, O—H⋯O hydrogen bonds link the Schiff base mol­ecules.

Related literature

For background to Schiff bases, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a related structure, see: Ohba (1996[Ohba, S. (1996). Acta Cryst. C52, 2118-2119.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O6·C5H5N

  • Mr = 411.38

  • Triclinic, [P \overline 1]

  • a = 6.9020 (18) Å

  • b = 7.6240 (12) Å

  • c = 19.073 (3) Å

  • α = 95.112 (13)°

  • β = 91.199 (17)°

  • γ = 107.024 (19)°

  • V = 954.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.978

  • 7517 measured reflections

  • 4401 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 0.82

  • 4401 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O4i 0.82 2.53 3.319 (2) 162
N2—H2A⋯O3 0.86 2.03 2.635 (2) 126
Symmetry code: (i) -x+1, -y-1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our in the study of the coordination chemistry of Schiff bases, we synthesized the title compound, (I), and determined its crystal structure.

The molecular structure of (I) is shown in Fig.1. The benzene ring and the 2,4-dinitro benzene ring are nearly coplanar, making a dihedral angle of 3.49 (10)°. The dinitro group is coplanar with C9-benzene ring with a dihedral angle of 0.58 (8). Bond lengths and bond angles agree with those of other dinitrophenylhydrazone derivatives (Ohba, 1996).

Intramolecular N—H···O and intermolecular O—H···O hydrogen bonds are certainly responsible for the planar conformation of the molecule.

Related literature top

For background to Schiff bases, see: Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Ohba (1996).

Experimental top

2,4-Dinitrophenylhydrazine (1 mmol, 0.198 g) was dissolved in anhydrous ethanol (15 ml), H2SO4(98%, 0.5 ml) was then added and the mixture was stirred for several minitutes at 351 K. Then, 2-hydroxy-3-methoxybenzaldehyde (1 mmol, 0.152 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 3 h. The product was isolated and recrystallized from pyridine, red blocks of (I) were obtained after two weeks.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.96 Å(methyl) and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(CH, CH2 or NH) and Uiso(H) = 1.5Ueq(C).

Structure description top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our in the study of the coordination chemistry of Schiff bases, we synthesized the title compound, (I), and determined its crystal structure.

The molecular structure of (I) is shown in Fig.1. The benzene ring and the 2,4-dinitro benzene ring are nearly coplanar, making a dihedral angle of 3.49 (10)°. The dinitro group is coplanar with C9-benzene ring with a dihedral angle of 0.58 (8). Bond lengths and bond angles agree with those of other dinitrophenylhydrazone derivatives (Ohba, 1996).

Intramolecular N—H···O and intermolecular O—H···O hydrogen bonds are certainly responsible for the planar conformation of the molecule.

For background to Schiff bases, see: Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Ohba (1996).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is indicatd with dashed lines.
[Figure 2] Fig. 2. The partial packing of (I).
2-Hydroxy-3-methoxybenzaldehyde 2,4-dinitrophenylhydrazone pyridine monosolvate top
Crystal data top
C14H12N4O6·C5H5NZ = 2
Mr = 411.38F(000) = 418
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9020 (18) ÅCell parameters from 1741 reflections
b = 7.6240 (12) Åθ = 3.2–29.3°
c = 19.073 (3) ŵ = 0.11 mm1
α = 95.112 (13)°T = 293 K
β = 91.199 (17)°Block, red
γ = 107.024 (19)°0.21 × 0.19 × 0.17 mm
V = 954.7 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
4401 independent reflections
Radiation source: fine-focus sealed tube1852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 29.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 89
Tmin = 0.973, Tmax = 0.978k = 108
7517 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
4401 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H12N4O6·C5H5Nγ = 107.024 (19)°
Mr = 411.38V = 954.7 (3) Å3
Triclinic, P1Z = 2
a = 6.9020 (18) ÅMo Kα radiation
b = 7.6240 (12) ŵ = 0.11 mm1
c = 19.073 (3) ÅT = 293 K
α = 95.112 (13)°0.21 × 0.19 × 0.17 mm
β = 91.199 (17)°
Data collection top
Bruker SMART CCD
diffractometer
4401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1852 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.020
7517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.82Δρmax = 0.31 e Å3
4401 reflectionsΔρmin = 0.38 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7466 (3)0.0112 (2)0.01896 (10)0.0424 (5)
N30.6500 (3)0.4948 (2)0.11703 (12)0.0485 (5)
O10.7209 (2)0.00916 (18)0.23110 (8)0.0549 (5)
H1B0.63150.06900.20690.082*
C10.7623 (3)0.1767 (3)0.13134 (12)0.0390 (5)
N20.7090 (3)0.1535 (2)0.02176 (10)0.0429 (5)
H2A0.67420.25610.00300.051*
C20.7567 (3)0.1720 (3)0.20412 (13)0.0412 (6)
O30.6370 (3)0.5111 (2)0.05341 (11)0.0677 (5)
C120.7671 (3)0.1328 (3)0.23637 (12)0.0386 (5)
O20.7845 (3)0.3159 (2)0.31832 (9)0.0670 (5)
C80.7250 (3)0.0051 (3)0.08483 (13)0.0399 (5)
H8A0.68560.10800.10350.048*
C100.7001 (3)0.3115 (2)0.13946 (12)0.0367 (5)
C30.7921 (3)0.3370 (3)0.24820 (13)0.0476 (6)
C60.8044 (3)0.3474 (3)0.10356 (13)0.0477 (6)
H6A0.81020.35260.05510.057*
C140.7760 (3)0.0185 (3)0.12116 (12)0.0400 (5)
H14A0.79520.12680.09180.048*
C110.7186 (3)0.3009 (3)0.21097 (12)0.0399 (6)
H11A0.69830.40750.24150.048*
O40.6221 (3)0.6271 (2)0.16096 (10)0.0679 (6)
N40.7912 (3)0.1221 (3)0.31121 (11)0.0534 (5)
C50.8368 (3)0.5061 (3)0.14741 (15)0.0549 (7)
H5A0.86340.61840.12840.066*
C130.7946 (3)0.0271 (3)0.19136 (12)0.0407 (6)
H13A0.82610.14070.20960.049*
O50.8451 (3)0.0308 (2)0.33278 (10)0.0713 (6)
C90.7280 (3)0.1511 (3)0.09170 (12)0.0354 (5)
C40.8307 (3)0.5021 (3)0.21998 (15)0.0533 (7)
H4A0.85280.61110.24930.064*
O60.7599 (3)0.2658 (3)0.35043 (10)0.0813 (6)
C180.3624 (4)0.0818 (3)0.36369 (12)0.0432 (6)
H18A0.33440.02970.32140.052*
C70.8415 (5)0.4749 (4)0.36657 (16)0.0861 (10)
H7A0.82920.43980.41380.129*
H7B0.75460.55000.35880.129*
H7C0.97960.54350.36010.129*
N50.2789 (4)0.0847 (4)0.48479 (16)0.0962 (9)
C190.2479 (4)0.0124 (4)0.42066 (17)0.0663 (8)
H19A0.13860.09230.41790.080*
C170.5183 (5)0.2274 (4)0.36801 (16)0.0732 (9)
H17A0.60120.27660.32770.088*
C150.4455 (5)0.2404 (4)0.48748 (17)0.0736 (8)
H15A0.47360.29480.52930.088*
C160.5660 (5)0.3114 (4)0.42861 (18)0.0760 (9)
H16A0.67830.41460.42930.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0478 (11)0.0423 (10)0.0358 (13)0.0098 (8)0.0002 (9)0.0099 (9)
N30.0542 (13)0.0366 (11)0.0584 (16)0.0161 (9)0.0098 (11)0.0130 (11)
O10.0749 (11)0.0411 (9)0.0432 (11)0.0083 (7)0.0017 (9)0.0069 (7)
C10.0306 (11)0.0417 (12)0.0435 (16)0.0081 (9)0.0015 (10)0.0074 (10)
N20.0563 (12)0.0342 (9)0.0379 (12)0.0107 (8)0.0036 (10)0.0109 (8)
C20.0362 (12)0.0440 (12)0.0425 (16)0.0099 (9)0.0003 (11)0.0060 (11)
O30.1054 (15)0.0491 (10)0.0544 (14)0.0253 (9)0.0186 (11)0.0247 (9)
C120.0393 (12)0.0444 (12)0.0343 (14)0.0142 (9)0.0037 (10)0.0097 (10)
O20.0895 (13)0.0634 (10)0.0400 (12)0.0122 (9)0.0021 (10)0.0021 (9)
C80.0380 (13)0.0438 (12)0.0390 (15)0.0116 (9)0.0002 (11)0.0123 (10)
C100.0346 (12)0.0317 (11)0.0448 (15)0.0093 (9)0.0043 (10)0.0104 (10)
C30.0421 (13)0.0523 (14)0.0452 (17)0.0094 (10)0.0008 (12)0.0036 (12)
C60.0434 (13)0.0469 (13)0.0480 (16)0.0039 (10)0.0011 (12)0.0123 (11)
C140.0472 (13)0.0343 (11)0.0377 (15)0.0100 (9)0.0037 (11)0.0070 (10)
C110.0398 (13)0.0358 (11)0.0430 (16)0.0102 (9)0.0029 (11)0.0016 (10)
O40.0970 (14)0.0336 (9)0.0729 (14)0.0187 (9)0.0124 (11)0.0037 (9)
N40.0635 (14)0.0614 (13)0.0397 (14)0.0235 (11)0.0074 (10)0.0110 (11)
C50.0510 (15)0.0418 (13)0.069 (2)0.0058 (11)0.0002 (13)0.0178 (12)
C130.0457 (13)0.0338 (11)0.0427 (15)0.0083 (9)0.0071 (11)0.0150 (10)
O50.1020 (15)0.0721 (12)0.0476 (13)0.0311 (10)0.0184 (10)0.0256 (9)
C90.0302 (11)0.0384 (11)0.0376 (15)0.0082 (9)0.0039 (10)0.0101 (10)
C40.0508 (15)0.0434 (13)0.060 (2)0.0067 (11)0.0025 (13)0.0023 (12)
O60.1247 (17)0.0754 (12)0.0429 (12)0.0308 (11)0.0063 (11)0.0032 (10)
C180.0617 (15)0.0504 (13)0.0200 (13)0.0172 (12)0.0036 (11)0.0137 (10)
C70.115 (3)0.084 (2)0.053 (2)0.0256 (18)0.0025 (18)0.0192 (16)
N50.102 (2)0.120 (2)0.080 (2)0.0501 (18)0.0147 (17)0.0221 (18)
C190.0695 (19)0.0749 (17)0.058 (2)0.0208 (14)0.0169 (16)0.0237 (15)
C170.099 (2)0.0744 (19)0.054 (2)0.0404 (17)0.0206 (18)0.0007 (16)
C150.084 (2)0.0792 (19)0.067 (2)0.0295 (17)0.0219 (18)0.0330 (17)
C160.081 (2)0.0683 (17)0.079 (3)0.0186 (15)0.0033 (19)0.0186 (17)
Geometric parameters (Å, º) top
N1—C81.272 (3)C14—C131.353 (3)
N1—N21.369 (2)C14—C91.408 (3)
N3—O41.219 (2)C14—H14A0.9300
N3—O31.233 (2)C11—H11A0.9300
N3—C101.444 (3)N4—O51.227 (2)
O1—C21.344 (2)N4—O61.231 (2)
O1—H1B0.8200C5—C41.388 (4)
C1—C21.393 (3)C5—H5A0.9300
C1—C61.402 (3)C13—H13A0.9300
C1—C81.467 (3)C4—H4A0.9300
N2—C91.344 (3)C18—C191.305 (3)
N2—H2A0.8600C18—C171.310 (3)
C2—C31.405 (3)C18—H18A0.9300
C12—C111.362 (3)C7—H7A0.9600
C12—C131.389 (3)C7—H7B0.9600
C12—N41.447 (3)C7—H7C0.9600
O2—C31.362 (3)N5—C191.381 (4)
O2—C71.407 (3)N5—C151.396 (4)
C8—H8A0.9300C19—H19A0.9300
C10—C111.380 (3)C17—C161.371 (4)
C10—C91.421 (3)C17—H17A0.9300
C3—C41.370 (3)C15—C161.354 (4)
C6—C51.366 (3)C15—H15A0.9300
C6—H6A0.9300C16—H16A0.9300
C8—N1—N2117.18 (18)O5—N4—C12118.34 (19)
O4—N3—O3122.35 (19)O6—N4—C12119.0 (2)
O4—N3—C10119.5 (2)C6—C5—C4121.0 (2)
O3—N3—C10118.15 (19)C6—C5—H5A119.5
C2—O1—H1B109.5C4—C5—H5A119.5
C2—C1—C6119.0 (2)C14—C13—C12120.38 (19)
C2—C1—C8120.1 (2)C14—C13—H13A119.8
C6—C1—C8120.8 (2)C12—C13—H13A119.8
C9—N2—N1118.40 (17)N2—C9—C14119.45 (18)
C9—N2—H2A120.8N2—C9—C10124.01 (19)
N1—N2—H2A120.8C14—C9—C10116.5 (2)
O1—C2—C1119.27 (19)C3—C4—C5119.7 (2)
O1—C2—C3121.0 (2)C3—C4—H4A120.2
C1—C2—C3119.7 (2)C5—C4—H4A120.2
C11—C12—C13120.8 (2)C19—C18—C17117.8 (3)
C11—C12—N4119.12 (19)C19—C18—H18A121.1
C13—C12—N4120.05 (19)C17—C18—H18A121.1
C3—O2—C7118.4 (2)O2—C7—H7A109.5
N1—C8—C1119.9 (2)O2—C7—H7B109.5
N1—C8—H8A120.1H7A—C7—H7B109.5
C1—C8—H8A120.1O2—C7—H7C109.5
C11—C10—C9121.50 (19)H7A—C7—H7C109.5
C11—C10—N3115.69 (19)H7B—C7—H7C109.5
C9—C10—N3122.8 (2)C19—N5—C15116.6 (3)
O2—C3—C4125.1 (2)C18—C19—N5124.1 (3)
O2—C3—C2114.6 (2)C18—C19—H19A118.0
C4—C3—C2120.4 (2)N5—C19—H19A118.0
C5—C6—C1120.3 (2)C18—C17—C16123.7 (3)
C5—C6—H6A119.9C18—C17—H17A118.1
C1—C6—H6A119.9C16—C17—H17A118.1
C13—C14—C9121.41 (19)C16—C15—N5119.4 (3)
C13—C14—H14A119.3C16—C15—H15A120.3
C9—C14—H14A119.3N5—C15—H15A120.3
C12—C11—C10119.34 (19)C15—C16—C17118.3 (3)
C12—C11—H11A120.3C15—C16—H16A120.8
C10—C11—H11A120.3C17—C16—H16A120.8
O5—N4—O6122.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.822.533.319 (2)162
N2—H2A···O30.862.032.635 (2)126
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC14H12N4O6·C5H5N
Mr411.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9020 (18), 7.6240 (12), 19.073 (3)
α, β, γ (°)95.112 (13), 91.199 (17), 107.024 (19)
V3)954.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.973, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
7517, 4401, 1852
Rint0.020
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 0.82
No. of reflections4401
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.822.533.319 (2)161.8
N2—H2A···O30.862.032.635 (2)126.3
Symmetry code: (i) x+1, y1, z.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationOhba, S. (1996). Acta Cryst. C52, 2118–2119.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds