organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(Z)-2-benzyl­hydrazin-1-yl­­idene]-2-bromo­acetate

aKey Laboratory of Original New Drug Design and Discovery of the Ministry of Education, College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China, and bKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: zhaolinxiang@syphu.edu.cn

(Received 28 July 2010; accepted 10 August 2010; online 18 August 2010)

In the title compound, C11H13BrN2O2, the dihedral angle between the phenyl ring and the almost planar (r.m.s. deviation = 0.011 Å) C—C(Br)=N—N(H)— fragment is 74.94 (16)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, which generate C(6) chains propagating in [010]. Weak aromatic ππ stacking [centroid–centroid separation = 3.784 (3) Å] may also help to consolidate the packing.

Related literature

For the use of the title compound in the preparation of heterocyclic compounds via the diploar cyclo­addition of thia­diazole, see Feddouli et al. (2004[Feddouli, A., Itto, M. Y. A., Hasnaoui, A., Villemin, D., Jaffrs, P. A., Santos, J. S. D. O., Riahi, A., Huet, F. & Daran, J. C. (2004). J. Heterocycl. Chem. 41, 731-735.]); Abouricha et al. (2005[Abouricha, S., Rakib, E., Benchat, N., Alaoui, M., Allouchi, H. & EI-Bali, B. (2005). Synth. Commun. 35, 2213-2221.]); Hafez et al. (2008[Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & EI-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538-4543.]). For the synthesis of the title compound, see Bach et al. (1994[Bach, K. K., El-Seedi, H. R., Jensen, H. M., Nielsen, H. B., Thomsen, I. & Torssell, K. B. G. (1994). Tetrahedron, 50, 7543-7556.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BrN2O2

  • Mr = 285.14

  • Monoclinic, P 21 /c

  • a = 9.046 (1) Å

  • b = 11.235 (1) Å

  • c = 12.326 (2) Å

  • β = 92.935 (4)°

  • V = 1251.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 294 K

  • 0.25 × 0.14 × 0.07 mm

Data collection
  • Siemens APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.495, Tmax = 0.803

  • 4952 measured reflections

  • 2188 independent reflections

  • 1475 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.02

  • 2188 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.24 2.965 (4) 141
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

(Benzylhydrazono)acetate is a key intermediate in the preparation for pyrazoline compounds (Bach et al., 1994), which are selective for the NMDA receptors and show weak antagonists. In addition, it plays an important role in the synthesis of thiadiazole nucleus (Feddouli et al., 2004; Abouricha et al., 2005), which have been exhibited potential anti-inflammatory and analgesic activities (Hafez et al., 2008). Herein, the structure of ethyl 2-bromo-(Z)-2-(2-benzylhydrazono)acetate has been determined.

The crystal structure of the title compound is given in Fig. 1. In the crystal, the adjacent molecules are stabilized by N—H···O hydrogen bonding, with the distance of 2.965 (4) Å (Table 1). Molecules are linked into chain along the b axis by the above hydrogen bond (Fig. 2).

Related literature top

For the use of the title compound in the preparation of heterocyclic compounds via the diploar cycloaddition of thiadiazole, see Feddouli et al. (2004); Abouricha et al. (2005); Hafez et al. (2008). For the synthesis of the title compound, see Bach et al. (1994).

Experimental top

To a stirred solution of ethyl 2,2-diethoxyacetate (1 ml, 5.6 mmol) and acetyl chloride (0.8 ml, 11.2 mmol) was added iodine (3 mg, 0.01 mmol). After the mixture was stirred for overnight, excess acetyl chloride was removed in vacuo, the residue in 1,4-dioxane (25 ml) was treated with benzylhydrazine dihydrochloride (1.09 g, 5.6 mmol) in water (10 ml), then the mixture was adjusted to pH 4. After 1 h the mixture was neutralized to pH 8 with saturated NaOH and evaporated in vacuo. The residue was added water and extracted with CH2Cl2, the organic layer was dried over MgSO4, filtered and concentrated. The crude compound was dissolved in AcOEt (8 ml), which was reacted with NBS (1.1 g, 6.2 mmol) for 2 h. After evaporation of the solvent, the residue was dissolved in CH2Cl2 and filtered, the filtrate was concentrated and purified by column chromatography (eluent: PE/AcOEt = 28/1) to give the title compound (0.67 g, 2.35 mmol) as a white solid. Colorless blocks of (I) were grown in PE/AcOEt (14/0.5, V/V) solution by slow evaporation at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methyl), 0.97 Å (methenyl), 0.93 Å (aromatic), and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal structure of (I) showing chain to the b linked via N—H···O contact.
Ethyl 2-[(Z)-2-benzylhydrazin-1-ylidene]-2-bromoacetate top
Crystal data top
C11H13BrN2O2F(000) = 576
Mr = 285.14Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1479 reflections
a = 9.046 (1) Åθ = 2.3–24.8°
b = 11.235 (1) ŵ = 3.27 mm1
c = 12.326 (2) ÅT = 294 K
β = 92.935 (4)°Block, colorless
V = 1251.1 (3) Å30.25 × 0.14 × 0.07 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
2188 independent reflections
Radiation source: fine-focus sealed tube1475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1010
Tmin = 0.495, Tmax = 0.803k = 137
4952 measured reflectionsl = 714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0656P)2]
where P = (Fo2 + 2Fc2)/3
2188 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C11H13BrN2O2V = 1251.1 (3) Å3
Mr = 285.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.046 (1) ŵ = 3.27 mm1
b = 11.235 (1) ÅT = 294 K
c = 12.326 (2) Å0.25 × 0.14 × 0.07 mm
β = 92.935 (4)°
Data collection top
Bruker APEX CCD
diffractometer
2188 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1475 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.803Rint = 0.019
4952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
2188 reflectionsΔρmin = 0.61 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44688 (4)0.25237 (4)0.31304 (3)0.0668 (2)
O10.3161 (3)0.0317 (2)0.2073 (2)0.0755 (8)
O20.3458 (2)0.0749 (2)0.03230 (18)0.0534 (6)
N10.5769 (3)0.3675 (3)0.1176 (2)0.0501 (7)
H10.57210.39730.18150.060*
N20.5071 (3)0.2673 (2)0.0922 (2)0.0424 (7)
C10.8144 (3)0.3760 (3)0.0231 (3)0.0436 (8)
C20.8605 (4)0.3447 (4)0.0771 (3)0.0726 (11)
H20.79460.35050.13740.087*
C31.0035 (5)0.3045 (4)0.0906 (4)0.0852 (13)
H31.03210.28340.15940.102*
C41.1013 (4)0.2958 (4)0.0045 (4)0.0696 (11)
H41.19760.27000.01360.083*
C51.0569 (4)0.3253 (4)0.0954 (4)0.0830 (13)
H51.12340.31820.15510.100*
C60.9142 (4)0.3659 (4)0.1105 (3)0.0721 (11)
H60.88630.38620.17970.087*
C70.6617 (3)0.4268 (3)0.0367 (3)0.0475 (8)
H7A0.67170.51010.05630.057*
H7B0.60640.42280.03270.057*
C80.4424 (3)0.2069 (3)0.1640 (3)0.0432 (7)
C90.3625 (3)0.0958 (3)0.1382 (3)0.0508 (8)
C100.2617 (4)0.0317 (4)0.0018 (3)0.0722 (11)
H10A0.17580.03780.04540.087*
H10B0.32260.10170.01510.087*
C110.2142 (5)0.0254 (4)0.1139 (3)0.0950 (15)
H11A0.14890.04120.12590.142*
H11B0.16320.09740.13490.142*
H11C0.29930.01590.15650.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0724 (3)0.0882 (4)0.0405 (3)0.00890 (18)0.00985 (18)0.00325 (18)
O10.1002 (19)0.0639 (19)0.0630 (17)0.0140 (15)0.0091 (14)0.0199 (14)
O20.0622 (13)0.0418 (15)0.0561 (14)0.0035 (11)0.0025 (11)0.0015 (11)
N10.0508 (14)0.0531 (19)0.0473 (16)0.0048 (13)0.0106 (12)0.0090 (14)
N20.0409 (13)0.0448 (19)0.0414 (15)0.0058 (12)0.0014 (12)0.0029 (12)
C10.0470 (16)0.0314 (19)0.053 (2)0.0016 (13)0.0059 (15)0.0020 (16)
C20.063 (2)0.099 (3)0.056 (2)0.012 (2)0.0053 (18)0.000 (2)
C30.080 (3)0.104 (4)0.074 (3)0.021 (3)0.024 (2)0.012 (3)
C40.055 (2)0.057 (3)0.099 (4)0.0130 (18)0.022 (2)0.011 (2)
C50.059 (2)0.110 (4)0.079 (3)0.022 (2)0.005 (2)0.015 (3)
C60.061 (2)0.099 (3)0.056 (2)0.013 (2)0.0058 (19)0.001 (2)
C70.0470 (17)0.041 (2)0.055 (2)0.0042 (14)0.0064 (15)0.0036 (16)
C80.0423 (16)0.048 (2)0.0393 (18)0.0079 (14)0.0031 (14)0.0039 (15)
C90.0520 (18)0.049 (2)0.051 (2)0.0064 (15)0.0036 (15)0.0049 (18)
C100.090 (3)0.046 (3)0.080 (3)0.014 (2)0.003 (2)0.009 (2)
C110.114 (4)0.069 (3)0.099 (4)0.014 (3)0.026 (3)0.008 (3)
Geometric parameters (Å, º) top
Br1—C81.906 (3)C4—C51.355 (6)
O1—C91.207 (4)C4—H40.9300
O2—C91.328 (4)C5—C61.391 (5)
O2—C101.457 (4)C5—H50.9300
N1—N21.320 (3)C6—H60.9300
N1—C71.451 (4)C7—H7A0.9700
N1—H10.8600C7—H7B0.9700
N2—C81.280 (4)C8—C91.468 (5)
C1—C21.370 (4)C10—C111.470 (5)
C1—C61.374 (5)C10—H10A0.9700
C1—C71.512 (4)C10—H10B0.9700
C2—C31.388 (5)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.350 (6)C11—H11C0.9600
C3—H30.9300
C9—O2—C10115.5 (3)N1—C7—H7A108.5
N2—N1—C7119.5 (3)C1—C7—H7A108.5
N2—N1—H1120.2N1—C7—H7B108.5
C7—N1—H1120.2C1—C7—H7B108.5
C8—N2—N1121.2 (3)H7A—C7—H7B107.5
C2—C1—C6117.9 (3)N2—C8—C9122.6 (3)
C2—C1—C7121.2 (3)N2—C8—Br1122.4 (3)
C6—C1—C7120.7 (3)C9—C8—Br1115.0 (2)
C1—C2—C3121.3 (4)O1—C9—O2124.2 (3)
C1—C2—H2119.4O1—C9—C8122.7 (3)
C3—C2—H2119.4O2—C9—C8113.1 (3)
C4—C3—C2120.5 (4)O2—C10—C11109.5 (3)
C4—C3—H3119.7O2—C10—H10A109.8
C2—C3—H3119.7C11—C10—H10A109.8
C3—C4—C5118.9 (4)O2—C10—H10B109.8
C3—C4—H4120.6C11—C10—H10B109.8
C5—C4—H4120.6H10A—C10—H10B108.2
C4—C5—C6121.5 (4)C10—C11—H11A109.5
C4—C5—H5119.3C10—C11—H11B109.5
C6—C5—H5119.3H11A—C11—H11B109.5
C1—C6—C5119.9 (4)C10—C11—H11C109.5
C1—C6—H6120.1H11A—C11—H11C109.5
C5—C6—H6120.1H11B—C11—H11C109.5
N1—C7—C1114.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.242.965 (4)141
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13BrN2O2
Mr285.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.046 (1), 11.235 (1), 12.326 (2)
β (°) 92.935 (4)
V3)1251.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.25 × 0.14 × 0.07
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.495, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
4952, 2188, 1475
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.02
No. of reflections2188
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.61

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.242.965 (4)141
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the China Inter­national Science and Technology Cooperation Plan (2009DEA31200).

References

First citationAbouricha, S., Rakib, E., Benchat, N., Alaoui, M., Allouchi, H. & EI-Bali, B. (2005). Synth. Commun. 35, 2213–2221.  Web of Science CSD CrossRef CAS
First citationBach, K. K., El-Seedi, H. R., Jensen, H. M., Nielsen, H. B., Thomsen, I. & Torssell, K. B. G. (1994). Tetrahedron, 50, 7543–7556.  CrossRef CAS Web of Science
First citationFeddouli, A., Itto, M. Y. A., Hasnaoui, A., Villemin, D., Jaffrs, P. A., Santos, J. S. D. O., Riahi, A., Huet, F. & Daran, J. C. (2004). J. Heterocycl. Chem. 41, 731–735.  CrossRef CAS
First citationHafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & EI-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538–4543.  Web of Science CSD CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds