organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[(1,3-Dioxan-4-yl)meth­yl]-2-(nitro­methyl­­idene)imidazolidine

aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China, and bSchool of Sciences, University of Jinan, People's Republic of China
*Correspondence e-mail: chm_lidm@ujn.edu.cn

(Received 8 August 2010; accepted 14 August 2010; online 21 August 2010)

In the title compound, C9H15N3O4, the 1,3-dioxane ring displays a chair conformation and the five-membered ring is close to planar (r.m.s. deviation = 0.054 Å). An intra­molecular N—H⋯O hydrogen bond to one of the nitro-group O atoms generates an S(6) ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into C(6) chains propagating in [010] and a C—H⋯O link also occurs.

Related literature

For a related structure, see Tian et al. (2009[Tian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.]). For background to neonicotinoid insecticides, see Mori et al. (2001[Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manag. Sci. 46, 40-46.]); Ohno et al. (2009[Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476-482.]); Jeschke & Nauen (2008[Jeschke, P. & Nauen, R. (2008). Pest Manag. Sci. 64, 1084-1098.]); Kagabu (1997[Kagabu, S. (1997). Rev. Toxicol. 1, 75-129.]); Tian et al. (2007[Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288-2292.]).

[Scheme 1]

Experimental

Crystal data
  • C9H15N3O4

  • Mr = 229.24

  • Monoclinic, P 21 /n

  • a = 5.0138 (4) Å

  • b = 9.8092 (9) Å

  • c = 21.7162 (18) Å

  • V = 1068.03 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.42 × 0.26 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.982

  • 5866 measured reflections

  • 1933 independent reflections

  • 1395 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.174

  • S = 1.10

  • 1933 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 2.17 2.694 (3) 119
N2—H2⋯O1i 0.86 2.17 2.824 (3) 133
C1—H1⋯O2ii 0.93 2.42 3.249 (3) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

By virtue of novel modes of action (targeting insect nicotinic acetylcholine receptors (nAChRs) (Ohno et al., 2009), low mammalian toxicity, broad insecticidal spectra, and good systemic properties (Jeschke et al., 2008), neonicotinoids has accounted for 18% of world insecticide sales in the past decades. Our interest was introducing oxygen atoms into the lead struture and synthesizing a series of new compounds, in which the title compound exhibited moderate insecticidal activities against pea aphids.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The 1,3-dioxane ring displays an chair conformation with bond angles lying between 110.0 (2)° and 111.7 (2)°. The nitro moiety is in trans configuration relative to the 1,3-dioxane ring and coplanar with the olefin-amine plane [N3—C2—C1—N1 = -177.49 (18)°]. Around N2 and N3 atoms the sums of the angles are 360° and 359.72°, respectively, indicating that they are typical sp2 hybridized and leading to an essentially planar imidazole ring.

Related literature top

For a related structure, see Tian et al. (2009). For background to neonicotinoid insecticides, see Mori et al. (2001); Ohno et al. (2009); Jeschke et al. (2008); Kagabu (1997); Tian et al. (2007).

Experimental top

A solution of N-((1,3-dioxan-4-yl)methyl)ethane-1,2-diamine (2 mmol), and 1,1-bis(thiomethyl)-2-nitroethylene (2 mmol) in 30 ml of ethanol was refluxed for 8 h and then cooled to room temperature. Evaporation under reduced pressure gave the title product after purifiction by flash chromatography. Colourless prisms of (I) were obtained by slow evaporation of a solution of the title compound in dichloromethane and ethyl acetate.

Refinement top

All H atoms were placed in their calculated positions and then refined using riding model with C—H = 0.93–0.99 Å, Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

By virtue of novel modes of action (targeting insect nicotinic acetylcholine receptors (nAChRs) (Ohno et al., 2009), low mammalian toxicity, broad insecticidal spectra, and good systemic properties (Jeschke et al., 2008), neonicotinoids has accounted for 18% of world insecticide sales in the past decades. Our interest was introducing oxygen atoms into the lead struture and synthesizing a series of new compounds, in which the title compound exhibited moderate insecticidal activities against pea aphids.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The 1,3-dioxane ring displays an chair conformation with bond angles lying between 110.0 (2)° and 111.7 (2)°. The nitro moiety is in trans configuration relative to the 1,3-dioxane ring and coplanar with the olefin-amine plane [N3—C2—C1—N1 = -177.49 (18)°]. Around N2 and N3 atoms the sums of the angles are 360° and 359.72°, respectively, indicating that they are typical sp2 hybridized and leading to an essentially planar imidazole ring.

For a related structure, see Tian et al. (2009). For background to neonicotinoid insecticides, see Mori et al. (2001); Ohno et al. (2009); Jeschke et al. (2008); Kagabu (1997); Tian et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level. The H atoms are shown as spheres of arbitrary size.
(E)-1-[(1,3-Dioxan-4-yl)methyl]-2-(nitromethylidene)imidazolidine top
Crystal data top
C9H15N3O4F(000) = 488
Mr = 229.24Dx = 1.426 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2831 reflections
a = 5.0138 (4) Åθ = 3.5–28.7°
b = 9.8092 (9) ŵ = 0.11 mm1
c = 21.7162 (18) ÅT = 296 K
β = 90°Prism, colourless
V = 1068.03 (16) Å30.42 × 0.26 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1933 independent reflections
Radiation source: fine-focus sealed tube1395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.4°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.954, Tmax = 0.982k = 1111
5866 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1126P)2]
where P = (Fo2 + 2Fc2)/3
1933 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C9H15N3O4V = 1068.03 (16) Å3
Mr = 229.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0138 (4) ŵ = 0.11 mm1
b = 9.8092 (9) ÅT = 296 K
c = 21.7162 (18) Å0.42 × 0.26 × 0.16 mm
β = 90°
Data collection top
Bruker APEXII CCD
diffractometer
1933 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1395 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.982Rint = 0.022
5866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.10Δρmax = 0.35 e Å3
1933 reflectionsΔρmin = 0.28 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.7955 (3)0.71286 (16)0.23056 (8)0.0532 (5)
N10.7422 (4)0.58813 (19)0.22961 (9)0.0420 (5)
C20.3945 (4)0.6124 (2)0.30617 (10)0.0343 (5)
O30.2691 (4)0.39753 (16)0.44986 (7)0.0536 (5)
N20.4042 (4)0.74655 (19)0.31417 (9)0.0435 (5)
H20.50380.80030.29300.052*
C10.5501 (4)0.5344 (2)0.26581 (10)0.0390 (6)
H10.51960.44090.26380.047*
N30.2104 (4)0.55718 (19)0.34370 (8)0.0421 (5)
O10.8720 (4)0.51016 (18)0.19406 (9)0.0640 (6)
C50.1287 (5)0.4153 (2)0.34624 (11)0.0432 (6)
H5A0.15140.37530.30570.052*
H5B0.05970.41150.35630.052*
C60.2786 (5)0.3314 (2)0.39185 (10)0.0406 (6)
H60.46530.32680.37870.049*
O40.2921 (5)0.1954 (2)0.50513 (9)0.0741 (7)
C70.1743 (5)0.1882 (2)0.39737 (11)0.0453 (6)
H7A0.21090.13870.35960.054*
H7B0.01750.19040.40320.054*
C40.0734 (5)0.6627 (3)0.37948 (11)0.0474 (6)
H4B0.08350.64380.42330.057*
H4A0.11250.66990.36750.057*
C30.2257 (5)0.7920 (2)0.36326 (11)0.0507 (7)
H3A0.10610.86290.34880.061*
H3B0.32550.82580.39840.061*
C90.4109 (7)0.3220 (3)0.49462 (13)0.0653 (8)
H9A0.59300.30860.48080.078*
H9B0.41630.37310.53280.078*
C80.3037 (7)0.1152 (3)0.45115 (13)0.0651 (8)
H8B0.21320.02930.45830.078*
H8A0.48850.09560.44130.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0554 (11)0.0286 (10)0.0756 (13)0.0030 (7)0.0114 (9)0.0037 (8)
N10.0450 (11)0.0278 (11)0.0533 (12)0.0051 (8)0.0010 (9)0.0052 (9)
C20.0377 (11)0.0255 (12)0.0397 (12)0.0020 (9)0.0111 (9)0.0038 (9)
O30.0719 (11)0.0445 (11)0.0443 (10)0.0009 (9)0.0041 (8)0.0026 (8)
N20.0474 (11)0.0262 (10)0.0569 (12)0.0006 (8)0.0004 (9)0.0001 (9)
C10.0458 (13)0.0261 (12)0.0451 (13)0.0020 (9)0.0025 (10)0.0019 (10)
N30.0524 (12)0.0317 (11)0.0423 (11)0.0025 (8)0.0010 (9)0.0015 (8)
O10.0772 (13)0.0398 (11)0.0750 (13)0.0116 (9)0.0302 (10)0.0017 (10)
C50.0450 (13)0.0410 (14)0.0437 (13)0.0091 (11)0.0063 (10)0.0035 (10)
C60.0441 (12)0.0376 (13)0.0399 (12)0.0056 (10)0.0015 (9)0.0002 (10)
O40.1233 (19)0.0549 (12)0.0441 (10)0.0022 (12)0.0030 (11)0.0089 (9)
C70.0536 (14)0.0350 (13)0.0471 (14)0.0038 (10)0.0041 (11)0.0019 (10)
C40.0462 (13)0.0482 (15)0.0477 (13)0.0052 (11)0.0027 (10)0.0031 (12)
C30.0677 (17)0.0349 (14)0.0494 (14)0.0088 (12)0.0027 (12)0.0024 (11)
C90.095 (2)0.0565 (18)0.0446 (15)0.0001 (15)0.0174 (14)0.0038 (13)
C80.096 (2)0.0411 (16)0.0584 (17)0.0051 (15)0.0003 (15)0.0049 (13)
Geometric parameters (Å, º) top
O2—N11.253 (2)C6—H60.9800
N1—C11.350 (3)C6—C71.504 (3)
N1—O11.267 (2)O4—C91.396 (4)
C2—N21.329 (3)O4—C81.413 (3)
C2—C11.401 (3)C7—H7A0.9700
C2—N31.345 (3)C7—H7B0.9700
O3—C61.418 (3)C7—C81.516 (4)
O3—C91.414 (3)C4—H4B0.9700
N2—H20.8600C4—H4A0.9700
N2—C31.462 (3)C4—C31.522 (4)
C1—H10.9300C3—H3A0.9700
N3—C51.452 (3)C3—H3B0.9700
N3—C41.465 (3)C9—H9A0.9700
C5—H5A0.9700C9—H9B0.9700
C5—H5B0.9700C8—H8B0.9700
C5—C61.491 (3)C8—H8A0.9700
O2—N1—C1121.61 (19)H5A—C5—H5B107.6
O2—N1—O1119.35 (19)C6—C5—H5A108.7
N1—C1—C2123.2 (2)C6—C5—H5B108.7
N1—C1—H1118.4C6—C7—H7A109.5
C2—N2—H2124.0C6—C7—H7B109.5
C2—N2—C3112.0 (2)C6—C7—C8110.7 (2)
C2—C1—H1118.4O4—C9—O3111.3 (2)
C2—N3—C5127.03 (19)O4—C9—H9A109.4
C2—N3—C4111.03 (19)O4—C9—H9B109.4
O3—C6—C5108.72 (19)O4—C8—C7111.0 (2)
O3—C6—H6108.2O4—C8—H8B109.4
O3—C6—C7110.17 (18)O4—C8—H8A109.4
O3—C9—H9A109.4C7—C6—H6108.2
O3—C9—H9B109.4C7—C8—H8B109.4
N2—C2—C1127.1 (2)C7—C8—H8A109.4
N2—C2—N3110.1 (2)H7A—C7—H7B108.1
N2—C3—C4102.82 (18)C4—C3—H3A111.2
N2—C3—H3A111.2C4—C3—H3B111.2
N2—C3—H3B111.2H4B—C4—H4A109.1
N3—C2—C1122.80 (19)C3—N2—H2124.0
N3—C5—H5A108.7C3—C4—H4B111.1
N3—C5—H5B108.7C3—C4—H4A111.1
N3—C5—C6114.35 (18)H3A—C3—H3B109.1
N3—C4—H4B111.1C9—O3—C6110.8 (2)
N3—C4—H4A111.1C9—O4—C8110.0 (2)
N3—C4—C3103.34 (19)H9A—C9—H9B108.0
O1—N1—C1119.04 (19)C8—C7—H7A109.5
C5—N3—C4121.66 (19)C8—C7—H7B109.5
C5—C6—H6108.2H8B—C8—H8A108.0
C5—C6—C7113.16 (18)
O2—N1—C1—C20.9 (3)N3—C5—C6—O352.3 (3)
C2—N2—C3—C47.0 (2)N3—C5—C6—C7175.06 (19)
C2—N3—C5—C692.4 (3)N3—C4—C3—N27.6 (2)
C2—N3—C4—C36.3 (2)O1—N1—C1—C2179.4 (2)
O3—C6—C7—C849.0 (3)C5—N3—C4—C3179.39 (19)
N2—C2—C1—N11.8 (3)C5—C6—C7—C8170.9 (2)
N2—C2—N3—C5176.06 (19)C6—O3—C9—O464.4 (3)
N2—C2—N3—C42.1 (2)C6—C7—C8—O449.6 (3)
C1—C2—N2—C3176.0 (2)C4—N3—C5—C694.3 (3)
C1—C2—N3—C54.5 (3)C9—O3—C6—C5179.5 (2)
C1—C2—N3—C4178.49 (19)C9—O3—C6—C756.0 (3)
N3—C2—N2—C33.4 (2)C9—O4—C8—C756.4 (3)
N3—C2—C1—N1177.49 (18)C8—O4—C9—O364.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.172.694 (3)119
N2—H2···O1i0.862.172.824 (3)133
C1—H1···O2ii0.932.423.249 (3)148
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H15N3O4
Mr229.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.0138 (4), 9.8092 (9), 21.7162 (18)
β (°)90, 90, 90
V3)1068.03 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.26 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.954, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5866, 1933, 1395
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.174, 1.10
No. of reflections1933
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.172.694 (3)119
N2—H2···O1i0.862.172.824 (3)133
C1—H1···O2ii0.932.423.249 (3)148
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20902037), the Opening Fund of Shanghai Key Laboratory of Chemical Biology (grant No. SKLCB-2008–08) and Doctoral Foundation of University of Jinan (B0542) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJeschke, P. & Nauen, R. (2008). Pest Manag. Sci. 64, 1084–1098.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKagabu, S. (1997). Rev. Toxicol. 1, 75–129.  CAS Google Scholar
First citationMori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manag. Sci. 46, 40–46.  Google Scholar
First citationOhno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds