organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-1-methyl-3-tri­fluoro­methyl-1H-pyrazol-5-amine

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 August 2010; accepted 12 August 2010; online 18 August 2010)

The five-membered ring of the title compound, C11H9ClF3N3, is almost planar (r.m.s. deviation = 0.002 Å) and the phenyl­ene ring is aligned at 44.8 (1)°. The N atom of the amino substituent shows a pyramidal geometry and is a hydrogen-bond donor to a Cl atom and to a ring N atom, which together generate a layer motif.

Related literature

For the synthesis of the title compound, see: Coispeau (1977[Coispeau, G. (1977). Ger. Patent DE 76-2643640.]); Nishiwaki et al. (1995[Nishiwaki, T., Arakawa, H. & Kikukawa, H. (1995). J. Chem. Res. (S), pp. 198-199.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9ClF3N3

  • Mr = 275.66

  • Monoclinic, P 21 /c

  • a = 5.8958 (5) Å

  • b = 16.8618 (13) Å

  • c = 12.1087 (10) Å

  • β = 98.459 (1)°

  • V = 1190.68 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.864, Tmax = 1.000

  • 5716 measured reflections

  • 2581 independent reflections

  • 1769 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.02

  • 2581 reflections

  • 172 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯Cl1i 0.88 (1) 2.65 (2) 3.413 (2) 146 (2)
N3—H2⋯N2ii 0.88 (1) 2.54 (2) 3.180 (3) 130 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-211.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I) is first mentioned in a synthesis by the cyclocondensation of hydrazines with 4,4,4-trifluoro-2-arylacetoacetonitriles in the context of colorants for polyacrylonitriles (Coispeau, 1977). The structure has been eluciated by carbon-13 NMR spectroscopy (Nishiwaki et al., 1995). We have used a modification of the published procedure to synthesize the compound, which is intended for further study on its pharmaceutical activity. There are no other reports on this compound aside from these studies.

Related literature top

For the synthesis of the title compound, see: Coispeau (1977); Nishiwaki et al. (1995).

Experimental top

Sodium metal (0.35 g, 15 mmol) was dissolved in absolute ethanol (50 ml). To this solution was added 2-(4-chlorophenyl)acetonitrile (1.52 g, 10 mmol) followed by ethyl trifluoroacetate (1.42 g, 10 mmol). The solution was heated for 3 h. The solution was concentrated under vacuum. To the residue was added acetic acid (20 ml) followed by methylhydrazine (0.55 g, 12 mmol). The mixture was stirred for 12 h. The solution was again concentrated under vacuum. The residue was treated with water (30 ml) and the organic compound was extracted with ethyl acetate. The organic phase was washed with saturated sodium bicarbonate (230 ml) and then dried over sodium sulfate. The solvent was removed and the residue was chromatographed on a silica gel column with ethyl acetate:petroleum ether (1:10) as eluant. This gave 2 g (70%) of product as a yellow solid, which was recrystallized from ethyl acetate.

Refinement top

Carbon bound H-atoms were positioned geometrically and refined using the riding model, and with C–H = 0.93 to 0.96 Å and U(H) set to 1.2–1.5 Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

Structure description top

The title compound (Scheme I) is first mentioned in a synthesis by the cyclocondensation of hydrazines with 4,4,4-trifluoro-2-arylacetoacetonitriles in the context of colorants for polyacrylonitriles (Coispeau, 1977). The structure has been eluciated by carbon-13 NMR spectroscopy (Nishiwaki et al., 1995). We have used a modification of the published procedure to synthesize the compound, which is intended for further study on its pharmaceutical activity. There are no other reports on this compound aside from these studies.

For the synthesis of the title compound, see: Coispeau (1977); Nishiwaki et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H9ClF3N3 showing displacement ellipsoids at the 50% probability level. H-atoms are drawn as spheres of arbitrary radius.
4-(4-Chlorophenyl)-1-methyl-3-trifluoromethyl-1H-pyrazol-5-amine top
Crystal data top
C11H9ClF3N3F(000) = 560
Mr = 275.66Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2152 reflections
a = 5.8958 (5) Åθ = 2.5–26.6°
b = 16.8618 (13) ŵ = 0.34 mm1
c = 12.1087 (10) ÅT = 293 K
β = 98.459 (1)°Block, yellow
V = 1190.68 (17) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.864, Tmax = 1.000k = 2110
5716 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.1525P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H9ClF3N3V = 1190.68 (17) Å3
Mr = 275.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8958 (5) ŵ = 0.34 mm1
b = 16.8618 (13) ÅT = 293 K
c = 12.1087 (10) Å0.40 × 0.40 × 0.20 mm
β = 98.459 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1769 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 1.000Rint = 0.029
5716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
2581 reflectionsΔρmin = 0.26 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24293 (10)0.63048 (3)0.86611 (5)0.03743 (19)
F10.9033 (3)0.36727 (9)0.43732 (12)0.0619 (5)
F20.7674 (3)0.46344 (8)0.52371 (12)0.0503 (4)
F30.5700 (3)0.35880 (11)0.48636 (14)0.0685 (5)
N11.1139 (3)0.27925 (10)0.73828 (14)0.0272 (4)
N21.0499 (3)0.29559 (10)0.62838 (14)0.0292 (4)
N31.0445 (3)0.31883 (12)0.91929 (16)0.0314 (4)
H10.929 (3)0.3386 (15)0.948 (2)0.054 (8)*
H21.087 (4)0.2714 (8)0.944 (2)0.044 (7)*
C10.6890 (4)0.43079 (11)0.77159 (17)0.0238 (5)
C20.4645 (4)0.43995 (12)0.71925 (18)0.0283 (5)
H2A0.40600.40490.66290.034*
C30.3258 (4)0.50032 (13)0.74945 (19)0.0293 (5)
H30.17670.50630.71290.035*
C40.4114 (4)0.55085 (12)0.83380 (19)0.0271 (5)
C50.6307 (4)0.54242 (12)0.89124 (18)0.0282 (5)
H50.68460.57630.94990.034*
C60.7681 (4)0.48252 (12)0.85957 (18)0.0266 (5)
H60.91610.47640.89750.032*
C70.8443 (4)0.37063 (11)0.73603 (18)0.0239 (4)
C80.9973 (3)0.32257 (12)0.80477 (18)0.0253 (5)
C90.8878 (4)0.35046 (12)0.62864 (18)0.0267 (5)
C100.7831 (4)0.38467 (14)0.5202 (2)0.0377 (6)
C111.2992 (4)0.22382 (14)0.7729 (2)0.0398 (6)
H11A1.40020.24560.83490.060*
H11B1.38310.21460.71190.060*
H11C1.23690.17460.79480.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0397 (3)0.0332 (3)0.0428 (4)0.0094 (2)0.0172 (3)0.0028 (2)
F10.0999 (14)0.0632 (11)0.0261 (8)0.0360 (9)0.0205 (8)0.0060 (7)
F20.0765 (11)0.0380 (8)0.0359 (9)0.0191 (7)0.0067 (7)0.0071 (6)
F30.0630 (11)0.0885 (13)0.0445 (10)0.0080 (9)0.0238 (9)0.0024 (9)
N10.0322 (10)0.0243 (9)0.0245 (10)0.0041 (8)0.0025 (8)0.0016 (7)
N20.0370 (11)0.0260 (9)0.0242 (10)0.0007 (8)0.0037 (8)0.0031 (7)
N30.0414 (12)0.0300 (11)0.0223 (10)0.0046 (9)0.0023 (9)0.0029 (8)
C10.0276 (11)0.0209 (10)0.0230 (11)0.0014 (8)0.0040 (9)0.0029 (8)
C20.0305 (12)0.0269 (11)0.0273 (12)0.0045 (9)0.0036 (9)0.0009 (9)
C30.0244 (11)0.0300 (11)0.0334 (13)0.0007 (9)0.0039 (9)0.0074 (9)
C40.0304 (12)0.0221 (10)0.0316 (12)0.0037 (9)0.0139 (10)0.0055 (9)
C50.0333 (12)0.0274 (11)0.0243 (11)0.0033 (9)0.0057 (9)0.0041 (9)
C60.0272 (11)0.0258 (11)0.0259 (12)0.0005 (9)0.0007 (9)0.0002 (9)
C70.0272 (11)0.0212 (10)0.0232 (11)0.0017 (8)0.0030 (9)0.0003 (8)
C80.0283 (11)0.0205 (10)0.0271 (12)0.0035 (8)0.0034 (9)0.0004 (9)
C90.0312 (11)0.0228 (10)0.0257 (12)0.0028 (9)0.0026 (9)0.0028 (9)
C100.0496 (15)0.0362 (13)0.0260 (13)0.0060 (11)0.0014 (11)0.0025 (10)
C110.0408 (14)0.0353 (13)0.0425 (15)0.0127 (11)0.0038 (11)0.0030 (11)
Geometric parameters (Å, º) top
Cl1—C41.749 (2)C2—C31.388 (3)
F1—C101.344 (3)C2—H2A0.9300
F2—C101.333 (3)C3—C41.368 (3)
F3—C101.336 (3)C3—H30.9300
N1—C81.348 (3)C4—C51.382 (3)
N1—N21.357 (2)C5—C61.384 (3)
N1—C111.452 (3)C5—H50.9300
N2—C91.331 (3)C6—H60.9300
N3—C81.375 (3)C7—C81.394 (3)
N3—H10.88 (1)C7—C91.404 (3)
N3—H20.88 (1)C9—C101.483 (3)
C1—C21.389 (3)C11—H11A0.9600
C1—C61.402 (3)C11—H11B0.9600
C1—C71.473 (3)C11—H11C0.9600
C8—N1—N2112.53 (17)C5—C6—H6119.3
C8—N1—C11127.18 (19)C1—C6—H6119.3
N2—N1—C11120.18 (18)C8—C7—C9102.82 (18)
C9—N2—N1103.59 (17)C8—C7—C1126.98 (19)
C8—N3—H1109.5 (19)C9—C7—C1130.08 (19)
C8—N3—H2113.0 (17)N1—C8—N3122.16 (19)
H1—N3—H2114 (2)N1—C8—C7107.49 (19)
C2—C1—C6117.73 (19)N3—C8—C7130.2 (2)
C2—C1—C7122.32 (18)N2—C9—C7113.57 (19)
C6—C1—C7119.94 (19)N2—C9—C10118.3 (2)
C3—C2—C1121.3 (2)C7—C9—C10128.1 (2)
C3—C2—H2A119.3F2—C10—F3105.6 (2)
C1—C2—H2A119.3F2—C10—F1106.7 (2)
C4—C3—C2119.1 (2)F3—C10—F1105.95 (19)
C4—C3—H3120.5F2—C10—C9112.43 (19)
C2—C3—H3120.5F3—C10—C9113.2 (2)
C3—C4—C5121.79 (19)F1—C10—C9112.3 (2)
C3—C4—Cl1119.06 (17)N1—C11—H11A109.5
C5—C4—Cl1119.10 (17)N1—C11—H11B109.5
C4—C5—C6118.5 (2)H11A—C11—H11B109.5
C4—C5—H5120.7N1—C11—H11C109.5
C6—C5—H5120.7H11A—C11—H11C109.5
C5—C6—C1121.4 (2)H11B—C11—H11C109.5
C8—N1—N2—C90.4 (2)N2—N1—C8—C70.5 (2)
C11—N1—N2—C9176.89 (19)C11—N1—C8—C7176.7 (2)
C6—C1—C2—C32.8 (3)C9—C7—C8—N10.3 (2)
C7—C1—C2—C3175.81 (19)C1—C7—C8—N1176.80 (19)
C1—C2—C3—C41.1 (3)C9—C7—C8—N3175.8 (2)
C2—C3—C4—C51.3 (3)C1—C7—C8—N30.6 (4)
C2—C3—C4—Cl1176.15 (16)N1—N2—C9—C70.2 (2)
C3—C4—C5—C62.0 (3)N1—N2—C9—C10177.86 (18)
Cl1—C4—C5—C6175.48 (16)C8—C7—C9—N20.1 (2)
C4—C5—C6—C10.2 (3)C1—C7—C9—N2176.4 (2)
C2—C1—C6—C52.1 (3)C8—C7—C9—C10177.3 (2)
C7—C1—C6—C5176.54 (19)C1—C7—C9—C101.0 (4)
C2—C1—C7—C8138.4 (2)N2—C9—C10—F2134.0 (2)
C6—C1—C7—C843.0 (3)C7—C9—C10—F243.3 (3)
C2—C1—C7—C946.1 (3)N2—C9—C10—F3106.4 (2)
C6—C1—C7—C9132.4 (2)C7—C9—C10—F376.3 (3)
N2—N1—C8—N3176.08 (18)N2—C9—C10—F113.6 (3)
C11—N1—C8—N30.1 (3)C7—C9—C10—F1163.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···Cl1i0.88 (1)2.65 (2)3.413 (2)146 (2)
N3—H2···N2ii0.88 (1)2.54 (2)3.180 (3)130 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9ClF3N3
Mr275.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8958 (5), 16.8618 (13), 12.1087 (10)
β (°) 98.459 (1)
V3)1190.68 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.864, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5716, 2581, 1769
Rint0.029
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.02
No. of reflections2581
No. of parameters172
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···Cl1i0.88 (1)2.65 (2)3.413 (2)146 (2)
N3—H2···N2ii0.88 (1)2.54 (2)3.180 (3)130 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Hunan University of Science and Engineering and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–211.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoispeau, G. (1977). Ger. Patent DE 76-2643640.  Google Scholar
First citationNishiwaki, T., Arakawa, H. & Kikukawa, H. (1995). J. Chem. Res. (S), pp. 198–199.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds