organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Anilino-3-(2-hy­dr­oxy­phen­yl)quinazolin-4(3H)-one methanol monosolvate

aFaculty of Chemistry and Life Science, Xianning University, Xianning 437100, Hubei, People's Republic of China, bInstitute of Medicinal Chemistry, Hubei Medical University, Shiyan 442000, Hubei, People's Republic of China, and cDepartment of Oncology, Renmin Hospital, Hubei Medical University, Shiyan 442000, Hubei, People's Republic of China
*Correspondence e-mail: chenxiaobao@yahoo.com.cn

(Received 27 July 2010; accepted 1 August 2010; online 11 August 2010)

In the title compound, C20H15N3O2·CH3OH, the quinazolin­one ring system is approximately planar, the dihedral angle between the pyrimidinone ring and the adjacent benzene ring being 1.73 (6)°. The pyrimidinone ring makes dihedral angles of 77.58 (6) and 29.62 (6)°, respectively, with the hy­droxy­phenyl and phenyl rings. In the crystal, the components are connected by O—H⋯O and C—H⋯O hydrogen bonds, forming a zigzag chain along the b axis.

Related literature

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11-17.]); Shiba et al. (1997[Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189-194.]); Malamas & Millen (1991[Malamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492-1503.]); Mannschreck et al. (1984[Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381-383.]); Kung et al. (1999[Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705-4713.]); Bartroli et al. (1998[Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869-1882.]); Palmer et al. (1997[Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519-1529.]); Tsou et al. (2001[Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., Uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719-2734.]); Matsuno et al. (2002[Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057-3066.]). For the synthesis of the title compound, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O2·CH4O

  • Mr = 361.39

  • Monoclinic, P 21 /c

  • a = 11.5575 (18) Å

  • b = 8.7305 (13) Å

  • c = 18.892 (3) Å

  • β = 106.251 (2)°

  • V = 1830.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Goöttingen, Germany.]) Tmin = 0.986, Tmax = 0.991

  • 21942 measured reflections

  • 4541 independent reflections

  • 3087 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.02

  • 4541 reflections

  • 254 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.940 (19) 1.74 (2) 2.6775 (14) 173.8 (17)
C11—H11⋯O1i 0.93 2.59 3.3781 (17) 143
O3—H3B⋯O1 0.90 (2) 1.85 (2) 2.7237 (14) 164.1 (18)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinazoline-4(3H)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999; Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al., 2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the pyrimidinone heterocycle and the adjacent benzene ring are not planar, but inclined at 1.73 (6)°. Significant intermolecular O—H···O and C—H···O and intramolecular O—H···O contribute strongly to the stability of the molecular configuration (Table 1 and Fig. 2).

Related literature top

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al. (1999); Shiba et al. (1997); Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al. (2002). For the synthesis of the title compound, see: Yang et al. (2008).

Experimental top

The title compound was prepared according to the literature method of Yang et al. (2008). To a solution of iminophosphorane (1.40 g, 3.0 mmol) in anhydrous THF (10 ml) was added isocyanatobenzene (3 mmol) under nitrogen at room temperature. After reaction, the mixture was allowed to stand for 10 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide, which was used directly without further purification. To a solution of 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide in THF (15 ml) was added 2-aminophenol (3 mmol). After the reaction mixture was allowed to stand for 0.5 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound, (I). The product was recrystallized from methanol-dichloromethane (1:1 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction (yield 85%).

Refinement top

All C-bound H atoms were located at their ideal positions with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and refined as riding, with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms. H atoms bonded to N and O atoms were found in a difference map and then refined with distance restraints of N—H = 0.85 (2) Å and O—H = 0.90 (2) Å. The Uiso(H) values were set k times of their carrier atoms (k = 1.2 for N and 1.5 for O atoms).

Structure description top

Quinazoline-4(3H)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999; Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al., 2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the pyrimidinone heterocycle and the adjacent benzene ring are not planar, but inclined at 1.73 (6)°. Significant intermolecular O—H···O and C—H···O and intramolecular O—H···O contribute strongly to the stability of the molecular configuration (Table 1 and Fig. 2).

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al. (1999); Shiba et al. (1997); Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al. (2002). For the synthesis of the title compound, see: Yang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing view of the crystal packing of (I), showing the formation of O—H···O and C—H···O hydrogen-bonds as dashed lines.
2-Anilino-3-(2-hydroxyphenyl)quinazolin-4(3H)-one methanol monosolvate top
Crystal data top
C20H15N3O2·CH4OF(000) = 760
Mr = 361.39Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6031 reflections
a = 11.5575 (18) Åθ = 2.5–24.8°
b = 8.7305 (13) ŵ = 0.09 mm1
c = 18.892 (3) ÅT = 298 K
β = 106.251 (2)°Block, colorless
V = 1830.1 (5) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4541 independent reflections
Radiation source: fine-focus sealed tube3087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1515
Tmin = 0.986, Tmax = 0.991k = 1111
21942 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0641P)2]
where P = (Fo2 + 2Fc2)/3
4541 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H15N3O2·CH4OV = 1830.1 (5) Å3
Mr = 361.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5575 (18) ŵ = 0.09 mm1
b = 8.7305 (13) ÅT = 298 K
c = 18.892 (3) Å0.16 × 0.12 × 0.10 mm
β = 106.251 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4541 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3087 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.074
21942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.15 e Å3
4541 reflectionsΔρmin = 0.20 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14579 (11)0.79335 (13)0.16728 (6)0.0498 (3)
C20.02576 (10)0.74840 (13)0.15172 (6)0.0489 (3)
C30.05802 (12)0.85206 (15)0.16547 (8)0.0596 (3)
H30.13870.82430.15540.072*
C40.02146 (14)0.99419 (16)0.19373 (8)0.0689 (4)
H40.07741.06120.20370.083*
C50.09758 (14)1.03937 (16)0.20762 (8)0.0704 (4)
H50.12081.13710.22570.085*
C60.18058 (12)0.94065 (15)0.19480 (7)0.0631 (4)
H60.26060.97090.20430.076*
C70.23377 (10)0.68658 (14)0.15427 (7)0.0502 (3)
C80.06580 (9)0.51041 (13)0.11378 (6)0.0463 (3)
C90.27399 (9)0.42459 (14)0.12439 (6)0.0476 (3)
C100.33853 (10)0.35392 (14)0.18934 (7)0.0511 (3)
C110.41817 (10)0.23803 (15)0.18518 (8)0.0579 (3)
H110.46340.19060.22810.070*
C120.43103 (10)0.19237 (15)0.11810 (8)0.0610 (3)
H120.48340.11270.11600.073*
C130.36727 (12)0.26327 (16)0.05411 (8)0.0636 (4)
H130.37670.23210.00900.076*
C140.28910 (11)0.38117 (15)0.05734 (7)0.0578 (3)
H140.24680.43110.01440.069*
C150.07866 (10)0.29493 (13)0.07155 (7)0.0489 (3)
C160.10077 (12)0.17938 (15)0.01980 (7)0.0595 (3)
H160.04310.15530.00420.071*
C170.20769 (13)0.09931 (18)0.00341 (8)0.0753 (4)
H170.22180.02100.03130.090*
C180.29321 (13)0.1351 (2)0.03829 (11)0.0859 (5)
H180.36600.08230.02690.103*
C190.27106 (13)0.24912 (18)0.09009 (11)0.0851 (5)
H190.32910.27260.11400.102*
C200.16407 (11)0.32979 (16)0.10748 (9)0.0663 (4)
H200.14980.40660.14300.080*
C210.58910 (15)0.6035 (2)0.12019 (10)0.0872 (5)
H21A0.67360.60410.12380.131*
H21B0.54500.56240.07330.131*
H21C0.57520.54140.15890.131*
N10.18861 (7)0.54311 (10)0.12879 (5)0.0475 (2)
N20.01409 (8)0.60588 (11)0.12228 (6)0.0514 (3)
N30.03525 (9)0.36584 (12)0.08787 (6)0.0559 (3)
H3A0.0925 (13)0.3156 (15)0.0783 (8)0.067*
O10.34102 (7)0.71482 (11)0.16472 (5)0.0673 (3)
O20.31895 (9)0.40317 (12)0.25304 (5)0.0712 (3)
H2A0.3655 (16)0.346 (2)0.2930 (11)0.107*
O30.54980 (9)0.75565 (12)0.12703 (6)0.0731 (3)
H3B0.4742 (18)0.750 (2)0.1312 (11)0.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0534 (7)0.0500 (7)0.0447 (6)0.0022 (5)0.0114 (5)0.0037 (5)
C20.0520 (7)0.0475 (7)0.0478 (6)0.0024 (5)0.0149 (5)0.0089 (5)
C30.0614 (8)0.0534 (8)0.0672 (8)0.0088 (6)0.0233 (6)0.0111 (6)
C40.0882 (11)0.0562 (8)0.0676 (9)0.0171 (7)0.0304 (8)0.0088 (7)
C50.0980 (12)0.0502 (8)0.0643 (9)0.0023 (7)0.0246 (8)0.0033 (6)
C60.0712 (9)0.0586 (8)0.0580 (8)0.0113 (7)0.0157 (6)0.0035 (6)
C70.0442 (6)0.0549 (7)0.0482 (7)0.0061 (5)0.0074 (5)0.0027 (5)
C80.0383 (6)0.0494 (7)0.0498 (6)0.0011 (5)0.0098 (5)0.0041 (5)
C90.0338 (5)0.0531 (7)0.0554 (7)0.0019 (5)0.0121 (5)0.0008 (5)
C100.0382 (6)0.0602 (7)0.0555 (7)0.0007 (5)0.0140 (5)0.0028 (6)
C110.0407 (6)0.0634 (8)0.0686 (8)0.0039 (6)0.0136 (6)0.0073 (7)
C120.0448 (7)0.0566 (8)0.0860 (10)0.0001 (6)0.0257 (7)0.0024 (7)
C130.0612 (8)0.0689 (9)0.0664 (9)0.0030 (7)0.0270 (7)0.0102 (7)
C140.0512 (7)0.0654 (8)0.0562 (8)0.0004 (6)0.0140 (6)0.0022 (6)
C150.0389 (6)0.0494 (7)0.0553 (7)0.0023 (5)0.0082 (5)0.0037 (5)
C160.0588 (8)0.0675 (8)0.0519 (7)0.0093 (6)0.0148 (6)0.0031 (6)
C170.0729 (10)0.0792 (10)0.0674 (9)0.0250 (8)0.0090 (7)0.0155 (8)
C180.0508 (8)0.0876 (12)0.1150 (14)0.0237 (8)0.0160 (9)0.0126 (10)
C190.0535 (8)0.0737 (10)0.1372 (16)0.0113 (7)0.0414 (9)0.0175 (10)
C200.0490 (7)0.0605 (8)0.0927 (11)0.0064 (6)0.0253 (7)0.0138 (7)
C210.0891 (11)0.0905 (12)0.0887 (12)0.0085 (9)0.0360 (9)0.0110 (9)
N10.0362 (5)0.0513 (6)0.0531 (6)0.0001 (4)0.0095 (4)0.0021 (4)
N20.0422 (5)0.0489 (6)0.0629 (6)0.0026 (4)0.0142 (4)0.0034 (5)
N30.0384 (5)0.0523 (6)0.0776 (7)0.0009 (4)0.0173 (5)0.0092 (5)
O10.0433 (5)0.0739 (6)0.0811 (7)0.0113 (4)0.0114 (4)0.0051 (5)
O20.0689 (6)0.0885 (7)0.0568 (6)0.0236 (5)0.0184 (5)0.0081 (5)
O30.0584 (6)0.0883 (8)0.0715 (6)0.0126 (5)0.0163 (5)0.0109 (5)
Geometric parameters (Å, º) top
C1—C21.3917 (16)C12—C131.3743 (19)
C1—C61.4031 (18)C12—H120.9300
C1—C71.4502 (17)C13—C141.3822 (18)
C2—N21.3879 (15)C13—H130.9300
C2—C31.4017 (16)C14—H140.9300
C3—C41.3701 (19)C15—C161.3781 (17)
C3—H30.9300C15—C201.3796 (17)
C4—C51.3840 (19)C15—N31.4086 (14)
C4—H40.9300C16—C171.3775 (18)
C5—C61.3608 (19)C16—H160.9300
C5—H50.9300C17—C181.369 (2)
C6—H60.9300C17—H170.9300
C7—O11.2244 (13)C18—C191.369 (2)
C7—N11.3901 (15)C18—H180.9300
C8—N21.2869 (14)C19—C201.3804 (18)
C8—N31.3640 (15)C19—H190.9300
C8—N11.3969 (13)C20—H200.9300
C9—C141.3793 (17)C21—O31.4210 (19)
C9—C101.3893 (17)C21—H21A0.9600
C9—N11.4482 (14)C21—H21B0.9600
C10—O21.3554 (16)C21—H21C0.9600
C10—C111.3848 (16)N3—H3A0.854 (14)
C11—C121.3755 (19)O2—H2A0.940 (19)
C11—H110.9300O3—H3B0.90 (2)
C2—C1—C6120.14 (11)C14—C13—H13120.2
C2—C1—C7119.19 (11)C9—C14—C13119.83 (12)
C6—C1—C7120.67 (11)C9—C14—H14120.1
N2—C2—C1122.47 (11)C13—C14—H14120.1
N2—C2—C3118.96 (11)C16—C15—C20119.63 (11)
C1—C2—C3118.57 (11)C16—C15—N3116.96 (11)
C4—C3—C2120.22 (13)C20—C15—N3123.30 (11)
C4—C3—H3119.9C17—C16—C15120.50 (13)
C2—C3—H3119.9C17—C16—H16119.8
C3—C4—C5120.92 (13)C15—C16—H16119.8
C3—C4—H4119.5C18—C17—C16119.95 (14)
C5—C4—H4119.5C18—C17—H17120.0
C6—C5—C4119.91 (13)C16—C17—H17120.0
C6—C5—H5120.0C17—C18—C19119.64 (13)
C4—C5—H5120.0C17—C18—H18120.2
C5—C6—C1120.22 (12)C19—C18—H18120.2
C5—C6—H6119.9C18—C19—C20121.13 (14)
C1—C6—H6119.9C18—C19—H19119.4
O1—C7—N1120.15 (11)C20—C19—H19119.4
O1—C7—C1124.71 (11)C15—C20—C19119.14 (13)
N1—C7—C1115.14 (10)C15—C20—H20120.4
N2—C8—N3121.42 (10)C19—C20—H20120.4
N2—C8—N1124.48 (11)O3—C21—H21A109.5
N3—C8—N1114.10 (10)O3—C21—H21B109.5
C14—C9—C10120.95 (11)H21A—C21—H21B109.5
C14—C9—N1120.83 (10)O3—C21—H21C109.5
C10—C9—N1118.20 (10)H21A—C21—H21C109.5
O2—C10—C11124.12 (11)H21B—C21—H21C109.5
O2—C10—C9117.49 (11)C7—N1—C8121.07 (10)
C11—C10—C9118.39 (12)C7—N1—C9117.90 (9)
C12—C11—C10120.59 (12)C8—N1—C9120.82 (9)
C12—C11—H11119.7C8—N2—C2117.48 (10)
C10—C11—H11119.7C8—N3—C15128.13 (10)
C13—C12—C11120.68 (12)C8—N3—H3A114.4 (9)
C13—C12—H12119.7C15—N3—H3A117.4 (9)
C11—C12—H12119.7C10—O2—H2A110.0 (11)
C12—C13—C14119.52 (13)C21—O3—H3B107.3 (12)
C12—C13—H13120.2
C6—C1—C2—N2177.94 (11)N3—C15—C16—C17176.81 (12)
C7—C1—C2—N21.67 (17)C15—C16—C17—C180.5 (2)
C6—C1—C2—C31.20 (17)C16—C17—C18—C190.9 (3)
C7—C1—C2—C3179.18 (11)C17—C18—C19—C200.5 (3)
N2—C2—C3—C4179.27 (11)C16—C15—C20—C190.8 (2)
C1—C2—C3—C40.10 (18)N3—C15—C20—C19176.97 (13)
C2—C3—C4—C51.5 (2)C18—C19—C20—C150.4 (3)
C3—C4—C5—C61.6 (2)O1—C7—N1—C8177.48 (10)
C4—C5—C6—C10.2 (2)C1—C7—N1—C83.11 (16)
C2—C1—C6—C51.14 (18)O1—C7—N1—C97.77 (16)
C7—C1—C6—C5179.25 (12)C1—C7—N1—C9171.63 (9)
C2—C1—C7—O1178.64 (11)N2—C8—N1—C70.53 (17)
C6—C1—C7—O10.98 (18)N3—C8—N1—C7178.81 (10)
C2—C1—C7—N11.99 (16)N2—C8—N1—C9174.06 (11)
C6—C1—C7—N1178.40 (10)N3—C8—N1—C96.60 (15)
C14—C9—C10—O2179.84 (11)C14—C9—N1—C7104.81 (13)
N1—C9—C10—O21.35 (16)C10—C9—N1—C776.38 (13)
C14—C9—C10—C110.32 (17)C14—C9—N1—C880.43 (13)
N1—C9—C10—C11178.49 (10)C10—C9—N1—C898.38 (13)
O2—C10—C11—C12178.59 (12)N3—C8—N2—C2177.48 (11)
C9—C10—C11—C121.24 (17)N1—C8—N2—C23.23 (17)
C10—C11—C12—C131.56 (19)C1—C2—N2—C84.31 (16)
C11—C12—C13—C140.29 (19)C3—C2—N2—C8176.55 (10)
C10—C9—C14—C131.57 (18)N2—C8—N3—C154.5 (2)
N1—C9—C14—C13177.21 (11)N1—C8—N3—C15176.17 (11)
C12—C13—C14—C91.26 (19)C16—C15—N3—C8153.97 (13)
C20—C15—C16—C170.4 (2)C20—C15—N3—C829.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.940 (19)1.74 (2)2.6775 (14)173.8 (17)
C11—H11···O1i0.932.593.3781 (17)143
O3—H3B···O10.90 (2)1.85 (2)2.7237 (14)164.1 (18)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15N3O2·CH4O
Mr361.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.5575 (18), 8.7305 (13), 18.892 (3)
β (°) 106.251 (2)
V3)1830.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
21942, 4541, 3087
Rint0.074
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.02
No. of reflections4541
No. of parameters254
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.940 (19)1.74 (2)2.6775 (14)173.8 (17)
C11—H11···O1i0.932.593.3781 (17)143.2
O3—H3B···O10.90 (2)1.85 (2)2.7237 (14)164.1 (18)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Hubei Medical University Educational Committee (grant No. 2009QJ12) for financial support, and acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Wuhan, for the data collection.

References

First citationBartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705–4713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492–1503.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381–383.  CAS Google Scholar
First citationMatsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057–3066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519–1529.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194.  CAS PubMed Web of Science Google Scholar
First citationTsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., Uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719–2734.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds