organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-methyl-5-oxo-4-(3,4,5-trimeth­­oxy­phen­yl)-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 104, India, and cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya (81100), Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 12 July 2010; accepted 29 July 2010; online 11 August 2010)

In the mol­ecular structure of the title compound, C22H27NO6, the dihydro­pyridine ring adopts a flattened boat conformation while the cyclo­hexenone ring is in an envelope conformation. In the crystal, mol­ecules stack parallel to the crystallographic a axis linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to the biological activity of quinoline derivatives, see: Baba (1997[Baba, M. (1997). Antivir. Res. 33, 141-152.]); Baba et al. (1997[Baba, M., Okamoto, M., Makino, M., Kimura, Y., Ikeuchi, T., Sakaguchi, T. & Okamoto, T. (1997). Antimicrob. Agents Chemother. 41, 1250-1255.],1998[Baba, M., Okamoto, M., Kawamura, M., Makino, M., Higashida, T., Takashi, T., Kimura, Y., Ikeuchi, T., Tetsuka, T. & Okamoto, T. (1998). Mol. Pharm. 53, 1097-1103.]); Davies et al. (2005[Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.]); Rose & Draeger et al. (1992[Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238-2243.]); Warrior et al. (2005[Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27NO6

  • Mr = 401.44

  • Triclinic, [P \overline 1]

  • a = 7.512 (2) Å

  • b = 10.402 (1) Å

  • c = 14.568 (3) Å

  • α = 109.77 (3)°

  • β = 95.42 (1)°

  • γ = 104.41 (2)°

  • V = 1017.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.26 × 0.24 × 0.21 mm

Data collection
  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.980

  • 4471 measured reflections

  • 3574 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.129

  • S = 1.03

  • 3574 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (3) 2.21 (3) 2.995 (2) 160 (3)
C2—H2B⋯O4ii 0.97 2.55 3.340 (3) 138
C10—H10B⋯O1i 0.96 2.59 3.429 (3) 146
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of quinoline are naturally occurring alkaloids and are very attractive for their various bioactivities. For example, they have calcium modulatory properties (Rose &Draeger, 1992), antibacterial activity (Davies et al., 2005),fungicidal activity (Warrior et al., 2005) and selective inhibitor of human immunodeficiency virus type I (HIV-1) transcription (Baba, 1997; Baba et al.,1997,1998) etc. Due to these significant biological activities, the structure of a quinoline derivative, ethyl 2-methyl-5-oxo -4-(3,4,5-trimethoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate is elucidated and reported.

The dihydropyridine ring of the title molecule adopts a flattened boat conformation. The cyclohexenone ring is in an envelope conformation with atom C3 at the flap. The 3,4,5-trimethoxyphenyl ring and the plane of the dihydropyridine ring (N1/C1/C6/C7/C8/C9) are nearly perpendicular to each other, with a dihedral angle of 89.33 (4)°. In the crystal structure, molecules are linked into a sheet (Fig.2) parallel to the a axis by N—H···O and C—H···O intra and intermolecular hydrogen bonds (Table 1). Further, it is observed that these sheets are assembled through centrosymmetrically related pairs of molecules by C2—H2B···O4 inter molecular hydrogen bond and weak interactions, which stabilize the structure.

Related literature top

For general background to the biological activity of quinoline derivatives, see: Baba (1997); Baba et al. (1997,1998); Davies et al. (2005); Rose & Draeger et al. (1992); Warrior et al. (2005).

Experimental top

3,4,5-trimethoxy benzaldehyde (10 mmol), 1,3-cyclohexanedione (10 mmol) and ethyl acetoacetate (10 mmol) were mixed along with 20 ml of ethanol. Ammonium acetate (10 mmol) was added to the mixture and refluxed on water bath for about 1 h. The progress of the reaction was monitored by TLC. After confirming that the reaction got completed, the reaction mixture was allowed to cool to room temperature and left aside for a day. Solid crystals started to grow from the mother liquor. It was filtered and washed with diethyl ether to ensure pure crystals [yield: 60%, m.p. 576–578 K].

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with N—H = 0.83 Å, C—H = 0.93–0.97 Å, and Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group.

Structure description top

Some derivatives of quinoline are naturally occurring alkaloids and are very attractive for their various bioactivities. For example, they have calcium modulatory properties (Rose &Draeger, 1992), antibacterial activity (Davies et al., 2005),fungicidal activity (Warrior et al., 2005) and selective inhibitor of human immunodeficiency virus type I (HIV-1) transcription (Baba, 1997; Baba et al.,1997,1998) etc. Due to these significant biological activities, the structure of a quinoline derivative, ethyl 2-methyl-5-oxo -4-(3,4,5-trimethoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate is elucidated and reported.

The dihydropyridine ring of the title molecule adopts a flattened boat conformation. The cyclohexenone ring is in an envelope conformation with atom C3 at the flap. The 3,4,5-trimethoxyphenyl ring and the plane of the dihydropyridine ring (N1/C1/C6/C7/C8/C9) are nearly perpendicular to each other, with a dihedral angle of 89.33 (4)°. In the crystal structure, molecules are linked into a sheet (Fig.2) parallel to the a axis by N—H···O and C—H···O intra and intermolecular hydrogen bonds (Table 1). Further, it is observed that these sheets are assembled through centrosymmetrically related pairs of molecules by C2—H2B···O4 inter molecular hydrogen bond and weak interactions, which stabilize the structure.

For general background to the biological activity of quinoline derivatives, see: Baba (1997); Baba et al. (1997,1998); Davies et al. (2005); Rose & Draeger et al. (1992); Warrior et al. (2005).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram showing the sheets of hydrogen bonds along the a axis
Ethyl 2-methyl-5-oxo-4-(3,4,5-trimethoxyphenyl)-1,4,5,6,7,8- hexahydroquinoline-3-carboxylate top
Crystal data top
C22H27NO6Z = 2
Mr = 401.44F(000) = 428
Triclinic, P1Dx = 1.310 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.512 (2) ÅCell parameters from 25 reflections
b = 10.402 (1) Åθ = 2–25°
c = 14.568 (3) ŵ = 0.10 mm1
α = 109.77 (3)°T = 294 K
β = 95.42 (1)°Block, colourless
γ = 104.41 (2)°0.26 × 0.24 × 0.21 mm
V = 1017.4 (4) Å3
Data collection top
Nonius MACH3
diffractometer
2653 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 18
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.976, Tmax = 0.980l = 1717
4471 measured reflections3 standard reflections every 60 min
3574 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.3979P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3574 reflectionsΔρmax = 0.23 e Å3
268 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C22H27NO6γ = 104.41 (2)°
Mr = 401.44V = 1017.4 (4) Å3
Triclinic, P1Z = 2
a = 7.512 (2) ÅMo Kα radiation
b = 10.402 (1) ŵ = 0.10 mm1
c = 14.568 (3) ÅT = 294 K
α = 109.77 (3)°0.26 × 0.24 × 0.21 mm
β = 95.42 (1)°
Data collection top
Nonius MACH3
diffractometer
2653 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.976, Tmax = 0.9803 standard reflections every 60 min
4471 measured reflections intensity decay: none
3574 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
3574 reflectionsΔρmin = 0.18 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C220.4600 (4)0.2952 (4)0.0056 (2)0.0841 (9)
H22A0.49220.35860.02930.101*
H22B0.35340.21530.03390.101*
H22C0.56420.26130.01780.101*
H1N0.286 (4)0.135 (3)0.2897 (18)0.061 (7)*
O40.68460 (19)0.35699 (15)0.22606 (11)0.0519 (4)
O30.36747 (19)0.26111 (15)0.50993 (10)0.0523 (4)
N10.1712 (2)0.09684 (18)0.30488 (13)0.0405 (4)
O10.41288 (19)0.16053 (16)0.25103 (12)0.0588 (4)
C60.1238 (2)0.11864 (19)0.27165 (13)0.0323 (4)
C10.0644 (2)0.17812 (19)0.25700 (13)0.0347 (4)
C80.0925 (2)0.09809 (19)0.40306 (13)0.0346 (4)
C90.0944 (2)0.0320 (2)0.38398 (14)0.0356 (4)
C150.4536 (2)0.20151 (19)0.27900 (14)0.0371 (4)
H150.54520.19910.32560.044*
O20.0990 (2)0.30115 (19)0.54511 (14)0.0765 (6)
C50.2404 (3)0.2085 (2)0.23209 (15)0.0407 (5)
C160.5036 (3)0.28065 (19)0.22121 (15)0.0388 (4)
O60.4166 (2)0.36880 (18)0.09651 (13)0.0659 (5)
C190.1316 (3)0.1295 (2)0.19881 (14)0.0393 (4)
H190.00680.07880.19140.047*
C70.2165 (2)0.03861 (18)0.33288 (13)0.0330 (4)
H70.33320.04710.37400.040*
C140.2679 (2)0.12545 (18)0.26814 (13)0.0332 (4)
O50.0588 (2)0.21801 (19)0.06860 (13)0.0656 (5)
C30.0564 (3)0.3963 (2)0.12134 (17)0.0557 (6)
H3A0.06020.35780.06940.067*
H3B0.11430.49910.09100.067*
C180.1810 (3)0.2088 (2)0.14062 (15)0.0430 (5)
C170.3684 (3)0.2858 (2)0.15175 (15)0.0438 (5)
C110.1788 (3)0.2281 (2)0.49145 (15)0.0446 (5)
C20.1646 (3)0.3315 (2)0.19699 (16)0.0448 (5)
H2A0.28690.33980.16310.054*
H2B0.18320.38400.24080.054*
C100.2342 (3)0.0813 (2)0.44419 (16)0.0479 (5)
H10A0.19860.08850.51120.058*
H10B0.35650.01350.41520.058*
H10C0.23660.17330.44450.058*
C40.1457 (3)0.3643 (2)0.16960 (18)0.0539 (6)
H4A0.14960.41980.21110.065*
H4B0.21560.39520.11790.065*
C200.1304 (3)0.1336 (3)0.04654 (18)0.0630 (7)
H20A0.19930.15030.00500.076*
H20B0.18350.15880.10510.076*
H20C0.13690.03420.02440.076*
C210.8277 (3)0.3578 (3)0.29756 (19)0.0573 (6)
H21A0.94660.41460.29350.069*
H21B0.83050.26160.28450.069*
H21C0.80250.39780.36300.069*
C130.6642 (3)0.4322 (3)0.5930 (2)0.0768 (8)
H13A0.72870.51560.65120.092*
H13B0.67680.45440.53470.092*
H13C0.71740.35640.59040.092*
C120.4662 (3)0.3867 (3)0.59723 (18)0.0667 (7)
H12A0.45300.36520.65650.080*
H12B0.41240.46350.60070.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C220.0715 (18)0.133 (3)0.080 (2)0.0367 (18)0.0272 (15)0.072 (2)
O40.0339 (8)0.0517 (9)0.0690 (10)0.0004 (6)0.0116 (7)0.0298 (8)
O30.0343 (8)0.0524 (9)0.0480 (8)0.0054 (6)0.0031 (6)0.0016 (7)
N10.0211 (8)0.0445 (9)0.0519 (10)0.0076 (7)0.0058 (7)0.0150 (8)
O10.0272 (8)0.0560 (9)0.0804 (11)0.0141 (7)0.0118 (7)0.0085 (8)
C60.0257 (9)0.0357 (10)0.0354 (9)0.0083 (7)0.0064 (7)0.0137 (8)
C10.0276 (9)0.0381 (10)0.0394 (10)0.0079 (8)0.0057 (8)0.0172 (8)
C80.0294 (9)0.0378 (10)0.0375 (10)0.0117 (8)0.0073 (8)0.0139 (8)
C90.0310 (10)0.0411 (10)0.0407 (10)0.0154 (8)0.0094 (8)0.0189 (8)
C150.0280 (9)0.0374 (10)0.0428 (11)0.0072 (8)0.0046 (8)0.0139 (8)
O20.0504 (10)0.0693 (11)0.0758 (12)0.0162 (8)0.0164 (9)0.0140 (9)
C50.0321 (10)0.0433 (11)0.0455 (11)0.0111 (8)0.0085 (8)0.0152 (9)
C160.0322 (10)0.0323 (10)0.0487 (11)0.0065 (8)0.0120 (8)0.0128 (8)
O60.0674 (11)0.0684 (11)0.0800 (12)0.0172 (9)0.0201 (9)0.0508 (10)
C190.0279 (9)0.0405 (10)0.0452 (11)0.0065 (8)0.0061 (8)0.0138 (9)
C70.0230 (8)0.0367 (10)0.0379 (10)0.0082 (7)0.0054 (7)0.0129 (8)
C140.0278 (9)0.0311 (9)0.0370 (10)0.0084 (7)0.0077 (7)0.0082 (8)
O50.0493 (10)0.0834 (12)0.0730 (11)0.0173 (8)0.0018 (8)0.0458 (10)
C30.0474 (13)0.0447 (12)0.0554 (13)0.0020 (10)0.0087 (10)0.0035 (10)
C180.0408 (11)0.0454 (11)0.0438 (11)0.0160 (9)0.0042 (9)0.0167 (9)
C170.0456 (12)0.0406 (11)0.0496 (12)0.0129 (9)0.0128 (9)0.0215 (9)
C110.0380 (11)0.0462 (11)0.0463 (11)0.0114 (9)0.0111 (9)0.0133 (9)
C20.0322 (10)0.0419 (11)0.0521 (12)0.0030 (8)0.0034 (9)0.0145 (9)
C100.0340 (11)0.0593 (13)0.0570 (13)0.0217 (9)0.0163 (9)0.0223 (10)
C40.0470 (12)0.0435 (12)0.0636 (14)0.0163 (10)0.0146 (11)0.0080 (10)
C200.0466 (13)0.0887 (18)0.0515 (13)0.0309 (13)0.0002 (10)0.0186 (13)
C210.0307 (11)0.0586 (14)0.0789 (16)0.0055 (10)0.0112 (11)0.0268 (12)
C130.0482 (14)0.0747 (17)0.0697 (17)0.0042 (12)0.0008 (12)0.0059 (14)
C120.0475 (13)0.0650 (15)0.0528 (14)0.0008 (11)0.0051 (11)0.0078 (12)
Geometric parameters (Å, º) top
C22—O61.402 (3)C19—H190.9300
C22—H22A0.9600C7—C141.525 (2)
C22—H22B0.9600C7—H70.9800
C22—H22C0.9600O5—C181.372 (2)
O4—C161.375 (2)O5—C201.413 (3)
O4—C211.421 (3)C3—C21.506 (3)
O3—C111.350 (2)C3—C41.516 (3)
O3—C121.446 (3)C3—H3A0.9700
N1—C11.374 (2)C3—H3B0.9700
N1—C91.379 (3)C18—C171.399 (3)
N1—H1N0.83 (3)C2—H2A0.9700
O1—C51.234 (2)C2—H2B0.9700
C6—C11.358 (2)C10—H10A0.9600
C6—C51.453 (3)C10—H10B0.9600
C6—C71.512 (3)C10—H10C0.9600
C1—C21.486 (3)C4—H4A0.9700
C8—C91.355 (2)C4—H4B0.9700
C8—C111.461 (3)C20—H20A0.9600
C8—C71.528 (2)C20—H20B0.9600
C9—C101.508 (3)C20—H20C0.9600
C15—C161.379 (3)C21—H21A0.9600
C15—C141.386 (2)C21—H21B0.9600
C15—H150.9300C21—H21C0.9600
O2—C111.209 (2)C13—C121.458 (3)
C5—C41.505 (3)C13—H13A0.9600
C16—C171.389 (3)C13—H13B0.9600
O6—C171.376 (2)C13—H13C0.9600
C19—C181.384 (3)C12—H12A0.9700
C19—C141.387 (3)C12—H12B0.9700
O6—C22—H22A109.5O5—C18—C19125.06 (18)
O6—C22—H22B109.5O5—C18—C17114.73 (18)
H22A—C22—H22B109.5C19—C18—C17120.20 (18)
O6—C22—H22C109.5O6—C17—C16120.62 (18)
H22A—C22—H22C109.5O6—C17—C18120.21 (18)
H22B—C22—H22C109.5C16—C17—C18119.13 (18)
C16—O4—C21117.61 (16)O2—C11—O3121.13 (19)
C11—O3—C12116.21 (17)O2—C11—C8126.93 (19)
C1—N1—C9122.70 (16)O3—C11—C8111.93 (16)
C1—N1—H1N116.1 (17)C1—C2—C3111.44 (16)
C9—N1—H1N120.6 (17)C1—C2—H2A109.3
C1—C6—C5119.71 (16)C3—C2—H2A109.3
C1—C6—C7121.31 (16)C1—C2—H2B109.3
C5—C6—C7118.90 (15)C3—C2—H2B109.3
C6—C1—N1119.52 (17)H2A—C2—H2B108.0
C6—C1—C2124.04 (17)C9—C10—H10A109.5
N1—C1—C2116.30 (16)C9—C10—H10B109.5
C9—C8—C11120.34 (17)H10A—C10—H10B109.5
C9—C8—C7120.86 (17)C9—C10—H10C109.5
C11—C8—C7118.80 (16)H10A—C10—H10C109.5
C8—C9—N1119.58 (17)H10B—C10—H10C109.5
C8—C9—C10126.59 (18)C5—C4—C3113.84 (18)
N1—C9—C10113.77 (16)C5—C4—H4A108.8
C16—C15—C14120.44 (18)C3—C4—H4A108.8
C16—C15—H15119.8C5—C4—H4B108.8
C14—C15—H15119.8C3—C4—H4B108.8
O1—C5—C6121.43 (18)H4A—C4—H4B107.7
O1—C5—C4120.26 (18)O5—C20—H20A109.5
C6—C5—C4118.29 (16)O5—C20—H20B109.5
O4—C16—C15124.14 (18)H20A—C20—H20B109.5
O4—C16—C17115.44 (17)O5—C20—H20C109.5
C15—C16—C17120.42 (17)H20A—C20—H20C109.5
C17—O6—C22113.52 (19)H20B—C20—H20C109.5
C18—C19—C14120.14 (17)O4—C21—H21A109.5
C18—C19—H19119.9O4—C21—H21B109.5
C14—C19—H19119.9H21A—C21—H21B109.5
C6—C7—C14112.18 (15)O4—C21—H21C109.5
C6—C7—C8110.40 (14)H21A—C21—H21C109.5
C14—C7—C8111.39 (14)H21B—C21—H21C109.5
C6—C7—H7107.6C12—C13—H13A109.5
C14—C7—H7107.6C12—C13—H13B109.5
C8—C7—H7107.6H13A—C13—H13B109.5
C15—C14—C19119.66 (17)C12—C13—H13C109.5
C15—C14—C7119.36 (16)H13A—C13—H13C109.5
C19—C14—C7120.98 (16)H13B—C13—H13C109.5
C18—O5—C20118.35 (18)O3—C12—C13110.0 (2)
C2—C3—C4110.79 (18)O3—C12—H12A109.7
C2—C3—H3A109.5C13—C12—H12A109.7
C4—C3—H3A109.5O3—C12—H12B109.7
C2—C3—H3B109.5C13—C12—H12B109.7
C4—C3—H3B109.5H12A—C12—H12B108.2
H3A—C3—H3B108.1
C5—C6—C1—N1171.81 (16)C6—C7—C14—C15120.58 (18)
C7—C6—C1—N15.1 (3)C8—C7—C14—C15115.10 (18)
C5—C6—C1—C23.6 (3)C6—C7—C14—C1959.5 (2)
C7—C6—C1—C2179.45 (17)C8—C7—C14—C1964.8 (2)
C9—N1—C1—C614.9 (3)C20—O5—C18—C194.4 (3)
C9—N1—C1—C2160.86 (18)C20—O5—C18—C17174.56 (19)
C11—C8—C9—N1174.65 (17)C14—C19—C18—O5178.62 (19)
C7—C8—C9—N15.4 (3)C14—C19—C18—C170.3 (3)
C11—C8—C9—C102.4 (3)C22—O6—C17—C1691.5 (3)
C7—C8—C9—C10177.55 (17)C22—O6—C17—C1890.4 (3)
C1—N1—C9—C814.7 (3)O4—C16—C17—O63.2 (3)
C1—N1—C9—C10162.71 (17)C15—C16—C17—O6177.59 (18)
C1—C6—C5—O1173.80 (19)O4—C16—C17—C18178.77 (17)
C7—C6—C5—O13.2 (3)C15—C16—C17—C180.5 (3)
C1—C6—C5—C44.2 (3)O5—C18—C17—O63.4 (3)
C7—C6—C5—C4178.84 (18)C19—C18—C17—O6177.62 (18)
C21—O4—C16—C152.2 (3)O5—C18—C17—C16178.56 (18)
C21—O4—C16—C17178.60 (18)C19—C18—C17—C160.5 (3)
C14—C15—C16—O4178.84 (17)C12—O3—C11—O20.6 (3)
C14—C15—C16—C170.3 (3)C12—O3—C11—C8178.82 (19)
C1—C6—C7—C14103.04 (19)C9—C8—C11—O212.8 (3)
C5—C6—C7—C1480.0 (2)C7—C8—C11—O2167.2 (2)
C1—C6—C7—C821.8 (2)C9—C8—C11—O3166.62 (17)
C5—C6—C7—C8155.10 (16)C7—C8—C11—O313.4 (2)
C9—C8—C7—C622.0 (2)C6—C1—C2—C324.4 (3)
C11—C8—C7—C6158.08 (16)N1—C1—C2—C3160.04 (18)
C9—C8—C7—C14103.36 (19)C4—C3—C2—C149.9 (3)
C11—C8—C7—C1476.6 (2)O1—C5—C4—C3158.6 (2)
C16—C15—C14—C190.2 (3)C6—C5—C4—C323.5 (3)
C16—C15—C14—C7179.89 (16)C2—C3—C4—C550.4 (3)
C18—C19—C14—C150.1 (3)C11—O3—C12—C13164.3 (2)
C18—C19—C14—C7179.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.982.362.720 (2)101
N1—H1N···O1i0.83 (3)2.21 (3)2.995 (2)160 (3)
C2—H2B···O4ii0.972.553.340 (3)138
C10—H10B···O1i0.962.593.429 (3)146
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC22H27NO6
Mr401.44
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.512 (2), 10.402 (1), 14.568 (3)
α, β, γ (°)109.77 (3), 95.42 (1), 104.41 (2)
V3)1017.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.24 × 0.21
Data collection
DiffractometerNonius MACH3
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4471, 3574, 2653
Rint0.013
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.129, 1.03
No. of reflections3574
No. of parameters268
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.982.362.720 (2)101
N1—H1N···O1i0.83 (3)2.21 (3)2.995 (2)160 (3)
C2—H2B···O4ii0.972.553.340 (3)138
C10—H10B···O1i0.962.593.429 (3)146
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z.
 

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBaba, M. (1997). Antivir. Res. 33, 141–152.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBaba, M., Okamoto, M., Kawamura, M., Makino, M., Higashida, T., Takashi, T., Kimura, Y., Ikeuchi, T., Tetsuka, T. & Okamoto, T. (1998). Mol. Pharm. 53, 1097–1103.  CAS Google Scholar
First citationBaba, M., Okamoto, M., Makino, M., Kimura, Y., Ikeuchi, T., Sakaguchi, T. & Okamoto, T. (1997). Antimicrob. Agents Chemother. 41, 1250–1255.  CAS PubMed Web of Science Google Scholar
First citationDavies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds