organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Bis(di­ethyl­amino)-2,2′-[2,2-di­methyl­propane-1,3-diylbis­(nitrilo­methyl­idyne)]diphenol

aDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 29 July 2010; accepted 5 August 2010; online 11 August 2010)

The asymmetric unit of the title compound, C27H40N4O2, comprises one mol­ecule of a potentially tetra­dentate Schiff base ligand. The dihedral angle between the two phenyl rings is 67.13 (10)°. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. One terminal methyl among the four diethyl­amino groups is disordered over two positions with the refined site occupancy ratio of 0.660 (7)/0.340 (7).

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures see, Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.], 2010[Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.]).

[Scheme 1]

Experimental

Crystal data
  • C27H40N4O2

  • Mr = 452.63

  • Triclinic, [P \overline 1]

  • a = 10.1143 (5) Å

  • b = 11.4004 (10) Å

  • c = 13.8505 (6) Å

  • α = 107.572 (3)°

  • β = 110.771 (2)°

  • γ = 96.628 (3)°

  • V = 1378.52 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.27 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.992

  • 23024 measured reflections

  • 6522 independent reflections

  • 3856 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.199

  • S = 1.06

  • 6522 reflections

  • 304 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 1.76 2.574 (2) 156
O2—H2⋯N2 0.87 1.78 2.587 (2) 153

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of tetradenate Schiff bases (Kargar et al., 2009; Kargar et al. 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradenate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle between the two phenyl rings is 67.13 (10)°. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). One of the terminal methyl of the diethylamino group was disordered over two positions with the refined site occupancy ratio of 0.660 (7)/0.340 (7).

Related literature top

For standard values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see, Kargar et al. (2009, 2010).

Experimental top

The title compound was synthesized by adding 4-diethylamino-salicylaldehyde (4 mmol) to a solution of 3,3-dimethylpropylenediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

H atoms of the hydroxy groups were located in a difference Fourier map. They first restrained to 0.85 (1) |%A and then constraied to refine with the parent atoms with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C-H = 0.93-0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was used for the methyl groups. One of the terminal methyl of the diethylamino group was disordered over two positions with the refined site occupancy ratio of 0.660 (7)/0.340 (7), and their distances were restrained to be 1.54 (1)Å.

Structure description top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of tetradenate Schiff bases (Kargar et al., 2009; Kargar et al. 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradenate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle between the two phenyl rings is 67.13 (10)°. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). One of the terminal methyl of the diethylamino group was disordered over two positions with the refined site occupancy ratio of 0.660 (7)/0.340 (7).

For standard values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see, Kargar et al. (2009, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
5,5'-Bis(diethylamino)-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C27H40N4O2Z = 2
Mr = 452.63F(000) = 492
Triclinic, P1Dx = 1.090 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1143 (5) ÅCell parameters from 2273 reflections
b = 11.4004 (10) Åθ = 2.5–27.5°
c = 13.8505 (6) ŵ = 0.07 mm1
α = 107.572 (3)°T = 296 K
β = 110.771 (2)°Block, yellow
γ = 96.628 (3)°0.27 × 0.21 × 0.11 mm
V = 1378.52 (15) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6522 independent reflections
Radiation source: fine-focus sealed tube3856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.982, Tmax = 0.992k = 1414
23024 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0929P)2 + 0.195P]
where P = (Fo2 + 2Fc2)/3
6522 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C27H40N4O2γ = 96.628 (3)°
Mr = 452.63V = 1378.52 (15) Å3
Triclinic, P1Z = 2
a = 10.1143 (5) ÅMo Kα radiation
b = 11.4004 (10) ŵ = 0.07 mm1
c = 13.8505 (6) ÅT = 296 K
α = 107.572 (3)°0.27 × 0.21 × 0.11 mm
β = 110.771 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6522 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3856 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.992Rint = 0.028
23024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0612 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.06Δρmax = 0.46 e Å3
6522 reflectionsΔρmin = 0.29 e Å3
304 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.69136 (14)0.38335 (13)0.42554 (10)0.0739 (4)
H10.73330.32420.40520.111*
O20.72879 (15)0.03336 (13)0.02875 (11)0.0690 (4)
H20.71660.02030.02640.104*
N10.87493 (16)0.24580 (14)0.41808 (12)0.0556 (4)
N20.66993 (17)0.06244 (16)0.14294 (12)0.0610 (4)
N30.81113 (18)0.74234 (17)0.75429 (14)0.0728 (5)
N40.6665 (3)0.3442 (2)0.19569 (19)0.1013 (7)
C10.78877 (18)0.45852 (17)0.52906 (14)0.0532 (4)
C20.75271 (19)0.56052 (17)0.58747 (15)0.0573 (5)
H2A0.66260.57640.55440.069*
C30.84833 (19)0.64160 (17)0.69594 (15)0.0565 (4)
C40.98449 (19)0.61456 (19)0.74217 (15)0.0624 (5)
H4A1.05060.66570.81400.075*
C51.01977 (19)0.51437 (19)0.68259 (15)0.0594 (5)
H5A1.11110.50010.71480.071*
C60.92522 (18)0.43177 (17)0.57511 (14)0.0511 (4)
C70.96270 (19)0.32419 (17)0.51473 (14)0.0537 (4)
H7A1.05460.31110.54730.064*
C80.9188 (2)0.13952 (17)0.36055 (15)0.0579 (5)
H8A1.00830.13140.41230.069*
H8B0.93890.15640.30190.069*
C90.8028 (2)0.01422 (18)0.31002 (15)0.0613 (5)
C100.6579 (2)0.0241 (2)0.23090 (16)0.0660 (5)
H10A0.58780.05770.19780.079*
H10B0.62060.08520.27320.079*
C110.6259 (2)0.1596 (2)0.13056 (15)0.0608 (5)
H11A0.58700.20300.17810.073*
C120.63422 (19)0.20459 (17)0.04561 (14)0.0550 (4)
C130.5885 (3)0.3123 (2)0.03497 (18)0.0744 (6)
H13A0.55080.35520.08360.089*
C140.5968 (3)0.3576 (2)0.04428 (19)0.0803 (6)
H14A0.56390.42940.04900.096*
C150.6546 (2)0.2968 (2)0.11830 (17)0.0689 (5)
C160.6990 (2)0.1877 (2)0.10934 (16)0.0640 (5)
H16A0.73710.14510.15780.077*
C170.68801 (18)0.14135 (17)0.03042 (14)0.0541 (4)
C180.7544 (9)0.2963 (6)0.2568 (6)0.190 (3)
H18A0.80330.36520.26910.228*0.660 (7)
H18B0.82850.26400.21310.228*0.660 (7)
H18C0.74340.34410.30440.228*0.340 (7)
H18D0.69710.21160.30520.228*0.340 (7)
C190.6677 (11)0.2019 (8)0.3565 (8)0.203 (3)0.660 (7)
H19A0.72750.16500.39150.305*0.660 (7)
H19B0.60270.23660.40340.305*0.660 (7)
H19C0.61180.13780.34480.305*0.660 (7)
C200.8997 (14)0.2825 (14)0.2338 (13)0.203 (3)0.340 (7)
H20A0.91850.27090.29880.305*0.340 (7)
H20B0.91050.21000.21300.305*0.340 (7)
H20C0.96770.35740.17400.305*0.340 (7)
C210.6062 (4)0.4490 (3)0.2141 (3)0.1042 (9)
H21A0.65550.48700.25010.125*
H21B0.62630.51310.14270.125*
C220.4456 (5)0.4118 (3)0.2835 (3)0.1328 (12)
H22A0.41360.48530.29270.199*
H22B0.39540.37680.24740.199*
H22C0.42460.34940.35490.199*
C230.7744 (3)0.0193 (2)0.4012 (2)0.0873 (7)
H23A0.73920.04600.43960.131*
H23B0.86360.02600.45270.131*
H23C0.70270.09890.36830.131*
C240.8582 (3)0.0893 (2)0.2478 (2)0.0935 (8)
H24A0.78690.16910.21540.140*
H24B0.94820.09580.29860.140*
H24C0.87440.06810.19020.140*
C260.9098 (2)0.8278 (2)0.86660 (19)0.0831 (7)
H26A0.88920.91080.87940.100*
H26B1.00950.83740.87300.100*
C270.8970 (3)0.7822 (3)0.9535 (2)0.1080 (9)
H27A0.96350.84211.02550.162*
H27B0.92030.70120.94270.162*
H27C0.79890.77360.94830.162*
C280.6716 (2)0.7709 (2)0.7091 (2)0.0863 (7)
H28A0.64750.81570.76970.104*
H28B0.59690.69190.66380.104*
C290.6702 (4)0.8501 (3)0.6398 (3)0.1193 (10)
H29A0.57550.86630.61200.179*
H29B0.69180.80550.57860.179*
H29C0.74250.92930.68460.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0589 (8)0.0722 (9)0.0559 (8)0.0181 (7)0.0020 (6)0.0077 (6)
O20.0818 (9)0.0697 (9)0.0671 (8)0.0309 (7)0.0355 (7)0.0305 (7)
N10.0539 (9)0.0590 (9)0.0504 (8)0.0137 (7)0.0166 (7)0.0216 (7)
N20.0572 (9)0.0689 (10)0.0470 (8)0.0060 (8)0.0122 (7)0.0229 (7)
N30.0550 (10)0.0763 (11)0.0671 (10)0.0085 (8)0.0244 (8)0.0036 (9)
N40.150 (2)0.1107 (16)0.1098 (16)0.0657 (15)0.0888 (16)0.0745 (14)
C10.0468 (9)0.0564 (10)0.0466 (9)0.0044 (8)0.0103 (7)0.0197 (8)
C20.0426 (9)0.0620 (11)0.0577 (10)0.0087 (8)0.0132 (8)0.0196 (8)
C30.0480 (10)0.0590 (11)0.0554 (10)0.0020 (8)0.0223 (8)0.0146 (8)
C40.0464 (10)0.0718 (12)0.0486 (9)0.0009 (9)0.0126 (8)0.0092 (9)
C50.0428 (9)0.0739 (12)0.0526 (10)0.0097 (8)0.0132 (8)0.0207 (9)
C60.0440 (9)0.0593 (10)0.0466 (9)0.0066 (7)0.0150 (7)0.0216 (8)
C70.0459 (9)0.0643 (11)0.0511 (9)0.0121 (8)0.0161 (8)0.0268 (8)
C80.0566 (10)0.0631 (11)0.0533 (10)0.0170 (9)0.0201 (8)0.0229 (8)
C90.0695 (12)0.0595 (11)0.0535 (10)0.0125 (9)0.0209 (9)0.0257 (8)
C100.0592 (11)0.0738 (13)0.0554 (10)0.0011 (9)0.0149 (9)0.0279 (9)
C110.0534 (10)0.0763 (13)0.0468 (9)0.0143 (9)0.0178 (8)0.0189 (9)
C120.0523 (10)0.0624 (11)0.0445 (9)0.0132 (8)0.0151 (8)0.0181 (8)
C130.0930 (15)0.0820 (14)0.0638 (12)0.0393 (12)0.0418 (11)0.0297 (11)
C140.1088 (18)0.0752 (14)0.0775 (14)0.0426 (13)0.0456 (13)0.0395 (12)
C150.0793 (14)0.0735 (13)0.0661 (12)0.0218 (11)0.0358 (11)0.0339 (10)
C160.0673 (12)0.0755 (13)0.0611 (11)0.0245 (10)0.0345 (10)0.0285 (10)
C170.0482 (9)0.0573 (10)0.0502 (9)0.0119 (8)0.0149 (8)0.0182 (8)
C180.342 (8)0.187 (5)0.202 (5)0.147 (6)0.200 (6)0.153 (5)
C190.307 (11)0.171 (6)0.208 (8)0.116 (7)0.151 (8)0.096 (6)
C200.307 (11)0.171 (6)0.208 (8)0.116 (7)0.151 (8)0.096 (6)
C210.159 (3)0.0858 (17)0.111 (2)0.0403 (18)0.078 (2)0.0623 (16)
C220.183 (4)0.119 (2)0.104 (2)0.071 (3)0.044 (2)0.0579 (19)
C230.0974 (17)0.0918 (16)0.0780 (14)0.0116 (13)0.0280 (13)0.0526 (13)
C240.115 (2)0.0673 (14)0.0896 (17)0.0288 (14)0.0346 (15)0.0240 (12)
C260.0659 (13)0.0758 (14)0.0754 (14)0.0015 (10)0.0266 (11)0.0061 (11)
C270.101 (2)0.125 (2)0.0709 (15)0.0122 (16)0.0349 (15)0.0063 (15)
C280.0636 (14)0.0899 (16)0.0876 (16)0.0203 (12)0.0333 (12)0.0062 (13)
C290.112 (2)0.110 (2)0.126 (2)0.0521 (19)0.039 (2)0.034 (2)
Geometric parameters (Å, º) top
O1—C11.350 (2)C14—H14A0.9300
O1—H10.8657C15—C161.396 (3)
O2—C171.347 (2)C16—C171.381 (3)
O2—H20.8670C16—H16A0.9300
N1—C71.277 (2)C18—C191.363 (7)
N1—C81.446 (2)C18—C201.427 (9)
N2—C111.277 (2)C18—H18A0.9700
N2—C101.451 (2)C18—H18B0.9700
N3—C31.367 (2)C18—H18C0.9600
N3—C281.447 (3)C18—H18D0.9600
N3—C261.458 (3)C19—H19A0.9600
N4—C151.371 (3)C19—H19B0.9600
N4—C211.452 (3)C19—H19C0.9600
N4—C181.474 (5)C20—H20A0.9600
C1—C21.371 (3)C20—H20B0.9600
C1—C61.412 (2)C20—H20C0.9600
C2—C31.404 (2)C21—C221.493 (5)
C2—H2A0.9300C21—H21A0.9700
C3—C41.412 (3)C21—H21B0.9700
C4—C51.359 (3)C22—H22A0.9600
C4—H4A0.9300C22—H22B0.9600
C5—C61.398 (2)C22—H22C0.9600
C5—H5A0.9300C23—H23A0.9600
C6—C71.435 (3)C23—H23B0.9600
C7—H7A0.9300C23—H23C0.9600
C8—C91.527 (3)C24—H24A0.9600
C8—H8A0.9700C24—H24B0.9600
C8—H8B0.9700C24—H24C0.9600
C9—C241.527 (3)C26—C271.486 (4)
C9—C101.528 (3)C26—H26A0.9700
C9—C231.531 (3)C26—H26B0.9700
C10—H10A0.9700C27—H27A0.9600
C10—H10B0.9700C27—H27B0.9600
C11—C121.442 (3)C27—H27C0.9600
C11—H11A0.9300C28—C291.501 (4)
C12—C131.391 (3)C28—H28A0.9700
C12—C171.401 (3)C28—H28B0.9700
C13—C141.370 (3)C29—H29A0.9600
C13—H13A0.9300C29—H29B0.9600
C14—C151.400 (3)C29—H29C0.9600
C1—O1—H1103.9C19—C18—H18B109.6
C17—O2—H2105.6N4—C18—H18B109.6
C7—N1—C8120.34 (15)H18A—C18—H18B108.1
C11—N2—C10118.74 (18)C19—C18—H18C80.5
C3—N3—C28122.36 (17)C20—C18—H18C101.9
C3—N3—C26121.98 (18)N4—C18—H18C102.4
C28—N3—C26115.65 (18)H18B—C18—H18C139.6
C15—N4—C21122.6 (2)C20—C18—H18D102.0
C15—N4—C18119.9 (2)N4—C18—H18D103.1
C21—N4—C18117.2 (2)H18A—C18—H18D132.7
O1—C1—C2118.79 (16)H18B—C18—H18D91.3
O1—C1—C6120.01 (16)H18C—C18—H18D105.0
C2—C1—C6121.20 (15)H18C—C19—H18D77.3
C1—C2—C3121.66 (17)C18—C19—H19A109.5
C1—C2—H2A119.2H18C—C19—H19A103.3
C3—C2—H2A119.2H18D—C19—H19A109.1
N3—C3—C2121.43 (17)C18—C19—H19B109.5
N3—C3—C4121.44 (16)H18C—C19—H19B76.9
C2—C3—C4117.14 (17)H18D—C19—H19B137.4
C5—C4—C3120.56 (16)C18—C19—H19C109.5
C5—C4—H4A119.7H18C—C19—H19C141.4
C3—C4—H4A119.7H18D—C19—H19C73.2
C4—C5—C6123.06 (17)C18—C20—H20A109.5
C4—C5—H5A118.5C18—C20—H20B109.5
C6—C5—H5A118.5H20A—C20—H20B109.5
C5—C6—C1116.37 (16)C18—C20—H20C109.5
C5—C6—C7122.25 (16)H20A—C20—H20C109.5
C1—C6—C7121.37 (15)H20B—C20—H20C109.5
N1—C7—C6122.62 (16)N4—C21—C22114.0 (3)
N1—C7—H7A118.7N4—C21—H21A108.7
C6—C7—H7A118.7C22—C21—H21A108.7
N1—C8—C9112.83 (15)N4—C21—H21B108.7
N1—C8—H8A109.0C22—C21—H21B108.7
C9—C8—H8A109.0H21A—C21—H21B107.6
N1—C8—H8B109.0C21—C22—H22A109.5
C9—C8—H8B109.0C21—C22—H22B109.5
H8A—C8—H8B107.8H22A—C22—H22B109.5
C24—C9—C8108.09 (17)C21—C22—H22C109.5
C24—C9—C10110.27 (17)H22A—C22—H22C109.5
C8—C9—C10110.82 (16)H22B—C22—H22C109.5
C24—C9—C23110.05 (18)C9—C23—H23A109.5
C8—C9—C23110.45 (16)C9—C23—H23B109.5
C10—C9—C23107.16 (17)H23A—C23—H23B109.5
N2—C10—C9113.33 (16)C9—C23—H23C109.5
N2—C10—H10A108.9H23A—C23—H23C109.5
C9—C10—H10A108.9H23B—C23—H23C109.5
N2—C10—H10B108.9C9—C24—H24A109.5
C9—C10—H10B108.9C9—C24—H24B109.5
H10A—C10—H10B107.7H24A—C24—H24B109.5
N2—C11—C12122.42 (18)C9—C24—H24C109.5
N2—C11—H11A118.8H24A—C24—H24C109.5
C12—C11—H11A118.8H24B—C24—H24C109.5
C13—C12—C17116.95 (17)N3—C26—C27113.0 (2)
C13—C12—C11121.55 (18)N3—C26—H26A109.0
C17—C12—C11121.49 (17)C27—C26—H26A109.0
C14—C13—C12122.6 (2)N3—C26—H26B109.0
C14—C13—H13A118.7C27—C26—H26B109.0
C12—C13—H13A118.7H26A—C26—H26B107.8
C13—C14—C15120.6 (2)C26—C27—H27A109.5
C13—C14—H14A119.7C26—C27—H27B109.5
C15—C14—H14A119.7H27A—C27—H27B109.5
N4—C15—C16122.1 (2)C26—C27—H27C109.5
N4—C15—C14120.6 (2)H27A—C27—H27C109.5
C16—C15—C14117.25 (18)H27B—C27—H27C109.5
C17—C16—C15121.80 (18)N3—C28—C29112.9 (2)
C17—C16—H16A119.1N3—C28—H28A109.0
C15—C16—H16A119.1C29—C28—H28A109.0
O2—C17—C16118.60 (17)N3—C28—H28B109.0
O2—C17—C12120.67 (16)C29—C28—H28B109.0
C16—C17—C12120.73 (17)H28A—C28—H28B107.8
C19—C18—C20106.0 (9)C28—C29—H29A109.5
C19—C18—N4110.4 (8)C28—C29—H29B109.5
C20—C18—N4138.8 (9)H29A—C29—H29B109.5
C19—C18—H18A109.6C28—C29—H29C109.5
C20—C18—H18A74.4H29A—C29—H29C109.5
N4—C18—H18A109.6H29B—C29—H29C109.5
O1—C1—C2—C3179.27 (16)N2—C11—C12—C13178.62 (18)
C6—C1—C2—C31.0 (3)N2—C11—C12—C171.7 (3)
C28—N3—C3—C20.7 (3)C17—C12—C13—C141.1 (3)
C26—N3—C3—C2179.50 (19)C11—C12—C13—C14179.3 (2)
C28—N3—C3—C4179.2 (2)C12—C13—C14—C150.8 (4)
C26—N3—C3—C40.5 (3)C21—N4—C15—C16173.0 (2)
C1—C2—C3—N3179.24 (17)C18—N4—C15—C1612.6 (5)
C1—C2—C3—C40.7 (3)C21—N4—C15—C147.2 (4)
N3—C3—C4—C5179.63 (17)C18—N4—C15—C14167.3 (4)
C2—C3—C4—C50.4 (3)C13—C14—C15—N4178.2 (2)
C3—C4—C5—C61.3 (3)C13—C14—C15—C161.6 (3)
C4—C5—C6—C11.0 (3)N4—C15—C16—C17179.3 (2)
C4—C5—C6—C7178.08 (17)C14—C15—C16—C170.5 (3)
O1—C1—C6—C5179.89 (16)C15—C16—C17—O2177.97 (18)
C2—C1—C6—C50.2 (3)C15—C16—C17—C121.4 (3)
O1—C1—C6—C71.0 (3)C13—C12—C17—O2177.21 (17)
C2—C1—C6—C7179.25 (16)C11—C12—C17—O22.4 (3)
C8—N1—C7—C6179.50 (16)C13—C12—C17—C162.2 (3)
C5—C6—C7—N1177.49 (16)C11—C12—C17—C16178.20 (16)
C1—C6—C7—N11.5 (3)C15—N4—C18—C1995.3 (5)
C7—N1—C8—C9133.19 (17)C21—N4—C18—C1990.0 (5)
N1—C8—C9—C24177.66 (16)C15—N4—C18—C2055.5 (13)
N1—C8—C9—C1056.7 (2)C21—N4—C18—C20119.2 (11)
N1—C8—C9—C2361.9 (2)C15—N4—C21—C2279.2 (3)
C11—N2—C10—C9124.9 (2)C18—N4—C21—C22106.2 (5)
C24—C9—C10—N263.4 (2)C3—N3—C26—C2786.6 (3)
C8—C9—C10—N256.3 (2)C28—N3—C26—C2793.2 (3)
C23—C9—C10—N2176.84 (18)C3—N3—C28—C2985.3 (3)
C10—N2—C11—C12179.79 (15)C26—N3—C28—C2994.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.871.762.574 (2)156
O2—H2···N20.871.782.587 (2)153

Experimental details

Crystal data
Chemical formulaC27H40N4O2
Mr452.63
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.1143 (5), 11.4004 (10), 13.8505 (6)
α, β, γ (°)107.572 (3), 110.771 (2), 96.628 (3)
V3)1378.52 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.27 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
23024, 6522, 3856
Rint0.028
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.199, 1.06
No. of reflections6522
No. of parameters304
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87001.76002.574 (2)156.00
O2—H2···N20.87001.78002.587 (2)153.00
 

Footnotes

Thomson Reuters Researcher ID: A-5471-2009 Additional corresponding author, e-mail zsrkk@yahoo.com, rkia@srbiau.ac.ir.

Acknowledgements

RK thanks IAU. HK and FK thank PNU for financial support. MNT thanks the University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds