organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 2-(3-cinnamoyl­thio­ureido)acetate

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 21 July 2010; accepted 28 July 2010; online 11 August 2010)

In the title compound, C13H14N2O3S, the methyl 2-(3-formyl­thio­ureido)acetate fragment and the phenyl ring adopt an E configuration. The mol­ecule exhibits an intra­molecular N—H⋯O hydrogen bond, which completes a six-membered ring. The crystal packing is stabilized by inter­molecular N—H⋯S contacts, generating a two-dimensional hydrogen-bonding network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.], 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]); Hung et al. (2010[Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.]). For the preparation, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O3S

  • Mr = 278.33

  • Triclinic, [P \overline 1]

  • a = 4.992 (2) Å

  • b = 11.720 (5) Å

  • c = 12.542 (6) Å

  • α = 112.999 (7)°

  • β = 91.492 (7)°

  • γ = 96.258 (7)°

  • V = 669.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.38 × 0.32 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.969

  • 6562 measured reflections

  • 2466 independent reflections

  • 1689 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.173

  • S = 1.12

  • 2466 reflections

  • 180 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.88 2.610 (4) 142
N1—H1A⋯S1i 0.85 2.61 3.463 (4) 176
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, I, is a methyl ester derivative of glycine thiourea analogoue to our previously reported molecules, methyl-2-(3-benzoylthioureido)acetate (II) (Hassan et al., 2009), ethyl-2-(3-benzoylthioureido)acetate (III) (Hassan et al., 2008a), propyl-2-(3-benzoylthioureido)acetate (IV) (Hassan et al., 2008b) and butyl-2-(3-benzoylthioureido)acetate (V) (Hassan et al., 2008c). Bond lengths and angles in the molecule are in normal ranges (Allen et al., 1987) and comparable to those of the benzoyl derivatives II, III, IV and V. The methyl acetate, [O2/O3/C9/C10/C11] plane is inclined to the phenyl ring, [C1—C6] (A), with a dihedral angle of 26.78 (18)° and this angle is smaller than that of compound (II) [73.4 (2)°]. The phenyl ring and the thiourea fragment, [S1/N1/N2/C9/C10/C11] (B), are essentially planar. In the methyl acetate group, the maximum deviation from the mean plane is 0.037 (2)Å for the atom O3. The dihedral angles of the fragments A/B and B/C are 11.17 (14)° and 20.21 (15)°, respectively, whereas the dihedral angle of the A/C fragments is 73.4 (2)°. There is an intramolecular hydrogen bond, N2—H2A···O1 which completes a six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig. 1) and an intermolecular N1—H1A···S1 hydrogen bond (Table 1) which generates a two-dimensional hydrogen bonding network.

Related literature top

Forbond-length data, see: Allen et al. (1987). For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009); Hung et al. (2010). For the preparation, see: Hassan et al. (2008a).

Experimental top

The title compound was synthesised according to a previously reported procedure (Hassan et al., 2008a). A colourless crystal, suitable for X-ray structuzre analysis was obtained by a slow evaporation from CH2Cl2 solution at room temperature (yield 73%).

Refinement top

H atoms of both C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso=1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å, and Uiso = 1.5Ueq (C) for CH3 0.96 Å. Hydrogen atoms attached to N were also positioned geometrically and allowed to ride on their parent atoms and with Uiso(H) = 1.2Ueq(N) for N–H 0.86 Å.

Structure description top

The title compound, I, is a methyl ester derivative of glycine thiourea analogoue to our previously reported molecules, methyl-2-(3-benzoylthioureido)acetate (II) (Hassan et al., 2009), ethyl-2-(3-benzoylthioureido)acetate (III) (Hassan et al., 2008a), propyl-2-(3-benzoylthioureido)acetate (IV) (Hassan et al., 2008b) and butyl-2-(3-benzoylthioureido)acetate (V) (Hassan et al., 2008c). Bond lengths and angles in the molecule are in normal ranges (Allen et al., 1987) and comparable to those of the benzoyl derivatives II, III, IV and V. The methyl acetate, [O2/O3/C9/C10/C11] plane is inclined to the phenyl ring, [C1—C6] (A), with a dihedral angle of 26.78 (18)° and this angle is smaller than that of compound (II) [73.4 (2)°]. The phenyl ring and the thiourea fragment, [S1/N1/N2/C9/C10/C11] (B), are essentially planar. In the methyl acetate group, the maximum deviation from the mean plane is 0.037 (2)Å for the atom O3. The dihedral angles of the fragments A/B and B/C are 11.17 (14)° and 20.21 (15)°, respectively, whereas the dihedral angle of the A/C fragments is 73.4 (2)°. There is an intramolecular hydrogen bond, N2—H2A···O1 which completes a six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig. 1) and an intermolecular N1—H1A···S1 hydrogen bond (Table 1) which generates a two-dimensional hydrogen bonding network.

Forbond-length data, see: Allen et al. (1987). For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009); Hung et al. (2010). For the preparation, see: Hassan et al. (2008a).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bond is drawn by a dotted line.
(E)-Methyl 2-(3-cinnamoylthioureido)acetate top
Crystal data top
C13H14N2O3SZ = 2
Mr = 278.33F(000) = 292
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.992 (2) ÅCell parameters from 1753 reflections
b = 11.720 (5) Åθ = 1.8–25.5°
c = 12.542 (6) ŵ = 0.25 mm1
α = 112.999 (7)°T = 298 K
β = 91.492 (7)°Block, colourless
γ = 96.258 (7)°0.38 × 0.32 × 0.13 mm
V = 669.6 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2466 independent reflections
Radiation source: fine-focus sealed tube1689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scanθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 66
Tmin = 0.912, Tmax = 0.969k = 1414
6562 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0832P)2 + 0.1736P]
where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H14N2O3Sγ = 96.258 (7)°
Mr = 278.33V = 669.6 (5) Å3
Triclinic, P1Z = 2
a = 4.992 (2) ÅMo Kα radiation
b = 11.720 (5) ŵ = 0.25 mm1
c = 12.542 (6) ÅT = 298 K
α = 112.999 (7)°0.38 × 0.32 × 0.13 mm
β = 91.492 (7)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2466 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1689 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.969Rint = 0.040
6562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0682 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.31 e Å3
2466 reflectionsΔρmin = 0.36 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2582 (2)0.96891 (9)0.84472 (8)0.0546 (4)
O10.8785 (5)1.3017 (3)0.8950 (2)0.0691 (9)
O20.6025 (5)1.2077 (3)0.5979 (2)0.0728 (9)
O30.2006 (5)1.1278 (2)0.5020 (2)0.0578 (7)
N10.6772 (6)1.1430 (3)0.9392 (2)0.0423 (7)
N20.4711 (6)1.1404 (3)0.7718 (2)0.0497 (8)
C11.5217 (7)1.3497 (3)1.2458 (3)0.0541 (10)
H1B1.40971.27661.23490.065*
C21.7365 (8)1.3923 (4)1.3298 (3)0.0643 (11)
H2B1.76631.34781.37530.077*
C31.9055 (8)1.4992 (4)1.3466 (3)0.0596 (10)
H3A2.04841.52741.40350.072*
C41.8621 (7)1.5641 (3)1.2790 (3)0.0554 (10)
H4A1.97691.63621.28910.066*
C51.6476 (7)1.5223 (3)1.1957 (3)0.0477 (9)
H5A1.61961.56721.15040.057*
C61.4733 (6)1.4153 (3)1.1780 (3)0.0400 (8)
C71.2554 (7)1.3734 (3)1.0864 (3)0.0453 (8)
H7A1.24141.42371.04520.054*
C81.0742 (6)1.2719 (3)1.0546 (3)0.0428 (8)
H8A1.07491.21931.09420.051*
C90.8735 (7)1.2429 (3)0.9572 (3)0.0479 (9)
C100.4759 (6)1.0896 (3)0.8501 (3)0.0394 (8)
C110.2769 (7)1.0976 (3)0.6722 (3)0.0496 (9)
H11A0.10381.12530.69610.059*
H11B0.25221.00700.63550.059*
C120.3849 (7)1.1516 (3)0.5889 (3)0.0431 (8)
C130.2708 (9)1.1823 (4)0.4194 (3)0.0680 (12)
H13A0.12511.15940.36050.102*
H13B0.43121.15200.38410.102*
H13C0.30271.27160.45880.102*
H2A0.591 (6)1.204 (2)0.787 (3)0.076 (14)*
H1A0.694 (8)1.112 (3)0.990 (3)0.070 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0615 (6)0.0558 (6)0.0520 (6)0.0166 (4)0.0175 (4)0.0350 (5)
O10.0748 (18)0.0797 (19)0.0662 (17)0.0313 (15)0.0313 (14)0.0561 (16)
O20.0507 (17)0.109 (2)0.0733 (19)0.0241 (16)0.0172 (14)0.0620 (18)
O30.0570 (15)0.0750 (18)0.0525 (15)0.0159 (13)0.0175 (12)0.0450 (14)
N10.0475 (16)0.0468 (17)0.0386 (16)0.0049 (13)0.0107 (13)0.0270 (14)
N20.0589 (19)0.0551 (19)0.0407 (16)0.0160 (15)0.0173 (14)0.0324 (15)
C10.054 (2)0.058 (2)0.058 (2)0.0086 (18)0.0137 (18)0.0368 (19)
C20.066 (3)0.077 (3)0.061 (2)0.005 (2)0.019 (2)0.046 (2)
C30.053 (2)0.070 (3)0.050 (2)0.004 (2)0.0173 (18)0.023 (2)
C40.050 (2)0.048 (2)0.061 (2)0.0087 (17)0.0087 (18)0.0193 (19)
C50.051 (2)0.047 (2)0.051 (2)0.0028 (17)0.0041 (17)0.0278 (18)
C60.0392 (18)0.0427 (19)0.0408 (18)0.0029 (15)0.0001 (15)0.0217 (16)
C70.047 (2)0.049 (2)0.0449 (19)0.0022 (17)0.0054 (16)0.0267 (17)
C80.0451 (19)0.050 (2)0.0400 (19)0.0011 (16)0.0061 (15)0.0271 (16)
C90.053 (2)0.050 (2)0.045 (2)0.0034 (17)0.0062 (17)0.0270 (18)
C100.0424 (19)0.0425 (19)0.0379 (18)0.0021 (15)0.0024 (15)0.0221 (16)
C110.051 (2)0.059 (2)0.045 (2)0.0092 (18)0.0124 (17)0.0330 (17)
C120.046 (2)0.048 (2)0.0401 (19)0.0011 (17)0.0079 (16)0.0246 (17)
C130.083 (3)0.083 (3)0.056 (2)0.009 (2)0.012 (2)0.052 (2)
Geometric parameters (Å, º) top
S1—C101.666 (3)C3—H3A0.9300
O1—C91.226 (4)C4—C51.380 (5)
O2—C121.186 (4)C4—H4A0.9300
O3—C121.329 (4)C5—C61.383 (4)
O3—C131.445 (4)C5—H5A0.9300
N1—C101.381 (4)C6—C71.456 (5)
N1—C91.383 (4)C7—C81.330 (5)
N1—H1A0.859 (10)C7—H7A0.9300
N2—C101.333 (4)C8—C91.466 (5)
N2—C111.447 (4)C8—H8A0.9300
N2—H2A0.859 (10)C11—C121.502 (4)
C1—C61.383 (5)C11—H11A0.9700
C1—C21.387 (5)C11—H11B0.9700
C1—H1B0.9300C13—H13A0.9600
C2—C31.371 (6)C13—H13B0.9600
C2—H2B0.9300C13—H13C0.9600
C3—C41.370 (5)
C12—O3—C13116.2 (3)C8—C7—H7A116.1
C10—N1—C9127.9 (3)C6—C7—H7A116.1
C10—N1—H1A120 (3)C7—C8—C9120.0 (3)
C9—N1—H1A112 (3)C7—C8—H8A120.0
C10—N2—C11124.3 (3)C9—C8—H8A120.0
C10—N2—H2A114 (3)O1—C9—N1121.8 (3)
C11—N2—H2A122 (3)O1—C9—C8122.9 (3)
C6—C1—C2120.3 (3)N1—C9—C8115.3 (3)
C6—C1—H1B119.8N2—C10—N1116.0 (3)
C2—C1—H1B119.8N2—C10—S1123.9 (2)
C3—C2—C1120.8 (4)N1—C10—S1120.2 (2)
C3—C2—H2B119.6N2—C11—C12107.6 (3)
C1—C2—H2B119.6N2—C11—H11A110.2
C4—C3—C2119.4 (3)C12—C11—H11A110.2
C4—C3—H3A120.3N2—C11—H11B110.2
C2—C3—H3A120.3C12—C11—H11B110.2
C3—C4—C5119.8 (3)H11A—C11—H11B108.5
C3—C4—H4A120.1O2—C12—O3124.0 (3)
C5—C4—H4A120.1O2—C12—C11125.7 (3)
C4—C5—C6121.7 (3)O3—C12—C11110.3 (3)
C4—C5—H5A119.2O3—C13—H13A109.5
C6—C5—H5A119.2O3—C13—H13B109.5
C1—C6—C5117.9 (3)H13A—C13—H13B109.5
C1—C6—C7122.8 (3)O3—C13—H13C109.5
C5—C6—C7119.2 (3)H13A—C13—H13C109.5
C8—C7—C6127.8 (3)H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.882.610 (4)142
N1—H1A···S1i0.852.613.463 (4)176
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC13H14N2O3S
Mr278.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.992 (2), 11.720 (5), 12.542 (6)
α, β, γ (°)112.999 (7), 91.492 (7), 96.258 (7)
V3)669.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.38 × 0.32 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.912, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
6562, 2466, 1689
Rint0.040
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.173, 1.12
No. of reflections2466
No. of parameters180
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.882.610 (4)142
N1—H1A···S1i0.852.613.463 (4)176
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010) and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds