metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Undeca­carbonyl-1κ3C,2κ4C,3κ4C-{tris­­[4-(methyl­sulfanyl)­phen­yl]arsine-1κAs}-triangulo-triruthenium(0)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 20 July 2010; accepted 22 July 2010; online 4 August 2010)

The crystal structure of the title triangulo-triruthenium compound, [Ru3(C21H21AsS3)(CO)11], confirms that during the synthesis one equatorial carbonyl ligand is substituted by a monodentate arsine ligand, leaving one equatorial and two axial carbonyl substituents on an Ru atom. The other two Ru atoms each carry two equatorial and two axial carbonyl ligands. The three arsine-substituted benzene rings make dihedral angles of 77.94 (13), 86.37 (13) and 73.22 (12)° with each other. Two of the methylsulfanyl groups are disordered over two positions with refined site occupancies of 0.720 (7):0.280 (7) and 0.644 (8):0.356 (8). In the crystal structure, mol­ecules are linked into infinite chains along the a axis by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.], 1988a[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181-205.],b[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207-235.]). For related structures, see: Shawkataly et al. (1998[Shawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211-1216.], 2004[Shawkataly, O. bin., Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387-394.], 2009[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1624-m1625.], 2010[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90-m91.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C21H21AsS3)(CO)11]

  • Mr = 1055.80

  • Monoclinic, P 21 /c

  • a = 14.3855 (2) Å

  • b = 15.1185 (2) Å

  • c = 19.0966 (3) Å

  • β = 118.221 (1)°

  • V = 3659.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 100 K

  • 0.51 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.378, Tmax = 0.768

  • 71424 measured reflections

  • 16330 independent reflections

  • 11811 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.02

  • 16330 reflections

  • 494 parameters

  • H-atom parameters constrained

  • Δρmax = 1.99 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O10i 0.93 2.46 3.317 (3) 153
C20—H20A⋯O6ii 0.96 2.59 3.153 (4) 118
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligand) have been reported (Bruce et al., 1988a, b; Bruce et al., 1985). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes (Shawkataly et al., 1998, 2004, 2009, 2010), herein we report the synthesis and structure of title compound.

In the title molecule (Fig. 1), a monodentate arsine ligand has replaced a single carbonyl ligand of the Ru3 triangle. The monodentate arsine ligand is bonded equatorially to atom Ru1 of the triangulo-triruthenium. Atoms Ru2 and Ru3 each carry two equatorial and two axial terminal carbonyl ligands. The three arsine-substituted benzene rings make dihedral angles (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18) of 77.94 (13), 86.37 (13) and 73.22 (12)° with each other respectively.

In the crystal structure, the molecules are linked into dimers by intermolecular C8—H8A···O10i hydrogen bonds (Fig. 2, Table 1). These dimers are further linked into infinite one-dimensional chains along the a axis by weak intermolecular C20—H20A···O6ii hydrogen bonds (Fig. 2, Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). SCHEME: P atom ahould be As

Experimental top

The reactions were conducted under an atmosphere of high purity nitrogen using standard Schlenk techniques and tetrahydrofuran (THF) dried over sodium metal. Tris(4-(methylsulfanyl)phenyl)arsine was prepared by the reaction of AsCl3 with 4-SCH3C6H4MgBr in THF. Equimolar quantity of Ru3(CO)12 and tris(4-(methylsulfanyl)phenyl)arsine were stirred in THF (25 ml) under nitrogen. About 0.2 ml of diphenylketyl radical anion initiator was introduced into the reaction mixture under a current of nitrogen. The reaction mixture turned intense red. After 10 minutes of stirring the solvent was removed under vacuum. The reaction mixture was separated by TLC (acetone:hexane, 10:90). Three bands appeared. The major band (red) Rf=0.78 was separated and characterized. Single crystals of title compound were crystallized from CH2Cl2—CH3OH.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl groups. Two of the methylsulfanyl groups are disordered over two positions with site occupancies of 0.720 (7)/0.280 (7) and 0.644 (8)/0.356 (8).

Structure description top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligand) have been reported (Bruce et al., 1988a, b; Bruce et al., 1985). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes (Shawkataly et al., 1998, 2004, 2009, 2010), herein we report the synthesis and structure of title compound.

In the title molecule (Fig. 1), a monodentate arsine ligand has replaced a single carbonyl ligand of the Ru3 triangle. The monodentate arsine ligand is bonded equatorially to atom Ru1 of the triangulo-triruthenium. Atoms Ru2 and Ru3 each carry two equatorial and two axial terminal carbonyl ligands. The three arsine-substituted benzene rings make dihedral angles (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18) of 77.94 (13), 86.37 (13) and 73.22 (12)° with each other respectively.

In the crystal structure, the molecules are linked into dimers by intermolecular C8—H8A···O10i hydrogen bonds (Fig. 2, Table 1). These dimers are further linked into infinite one-dimensional chains along the a axis by weak intermolecular C20—H20A···O6ii hydrogen bonds (Fig. 2, Table 1).

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). SCHEME: P atom ahould be As

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. All disorder component are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c axis, showing the molecules linked into a 1-D chain along the a axis. The minor disorder component and hydrogen atoms not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
Undecacarbonyl-1κ3C,2κ4C,3κ4C-{tris[4- (methylsulfanyl)phenyl]arsine-1κAs}-triangulo-triruthenium(0) top
Crystal data top
[Ru3(C21H21AsS3)(CO)11]F(000) = 2056
Mr = 1055.80Dx = 1.916 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9931 reflections
a = 14.3855 (2) Åθ = 2.1–35.2°
b = 15.1185 (2) ŵ = 2.35 mm1
c = 19.0966 (3) ÅT = 100 K
β = 118.221 (1)°Block, yellow
V = 3659.57 (9) Å30.51 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
16330 independent reflections
Radiation source: fine-focus sealed tube11811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 35.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1923
Tmin = 0.378, Tmax = 0.768k = 2424
71424 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0418P)2 + 4.1199P]
where P = (Fo2 + 2Fc2)/3
16330 reflections(Δ/σ)max = 0.002
494 parametersΔρmax = 1.99 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Ru3(C21H21AsS3)(CO)11]V = 3659.57 (9) Å3
Mr = 1055.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3855 (2) ŵ = 2.35 mm1
b = 15.1185 (2) ÅT = 100 K
c = 19.0966 (3) Å0.51 × 0.16 × 0.12 mm
β = 118.221 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
16330 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
11811 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 0.768Rint = 0.034
71424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.02Δρmax = 1.99 e Å3
16330 reflectionsΔρmin = 0.85 e Å3
494 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.303224 (14)0.708502 (12)0.663222 (11)0.02112 (4)
Ru20.443037 (15)0.566710 (13)0.683937 (13)0.02879 (5)
Ru30.303059 (15)0.625745 (13)0.526436 (11)0.02490 (5)
As10.179968 (17)0.830239 (15)0.597008 (13)0.01887 (5)
S1A0.15141 (11)1.13790 (18)0.82192 (13)0.0415 (5)0.720 (7)
S1B0.1413 (3)1.1668 (3)0.7944 (3)0.0287 (9)0.280 (7)
S20.31571 (5)0.71815 (5)0.42081 (5)0.03608 (15)
S3A0.2279 (3)1.0400 (3)0.3187 (2)0.0598 (9)0.644 (8)
S3B0.2214 (5)1.0245 (3)0.3115 (4)0.0276 (8)0.356 (8)
O10.11132 (17)0.59537 (15)0.63507 (15)0.0452 (5)
O20.34832 (18)0.72081 (15)0.83481 (12)0.0399 (5)
O30.48841 (14)0.83567 (13)0.70489 (12)0.0323 (4)
O40.12039 (19)0.50166 (17)0.50092 (14)0.0514 (6)
O50.14841 (19)0.71935 (15)0.37430 (12)0.0408 (5)
O60.4620 (2)0.77043 (17)0.54294 (15)0.0471 (6)
O70.38667 (18)0.48066 (16)0.45883 (14)0.0463 (6)
O80.62067 (18)0.68968 (17)0.6949 (2)0.0680 (9)
O90.5349 (3)0.56039 (19)0.86415 (15)0.0796 (11)
O100.26753 (17)0.44371 (13)0.67228 (12)0.0341 (4)
O110.55046 (17)0.40839 (15)0.65245 (15)0.0443 (5)
C10.18435 (18)1.01529 (16)0.64286 (14)0.0241 (4)
H1A0.18981.02870.59740.029*
C20.17614 (19)1.08362 (17)0.68915 (16)0.0294 (5)
H2A0.17681.14220.67460.035*
C30.1671 (2)1.06389 (19)0.75696 (16)0.0316 (5)
C40.1700 (2)0.9761 (2)0.77931 (15)0.0328 (6)
H4A0.16560.96240.82510.039*
C50.1794 (2)0.90880 (17)0.73399 (14)0.0262 (4)
H5A0.18240.85040.75010.031*
C60.18441 (17)0.92752 (15)0.66463 (13)0.0217 (4)
C70.00677 (18)0.73374 (16)0.48932 (14)0.0244 (4)
H7A0.03980.70430.47630.029*
C80.11261 (18)0.71044 (16)0.45143 (15)0.0258 (4)
H8A0.13660.66630.41290.031*
C90.18313 (17)0.75325 (16)0.47118 (14)0.0244 (4)
C100.14614 (19)0.82007 (17)0.52802 (15)0.0270 (5)
H10A0.19250.84920.54140.032*
C110.03987 (19)0.84348 (16)0.56490 (15)0.0253 (4)
H11A0.01600.88860.60240.030*
C120.03098 (17)0.80031 (15)0.54641 (13)0.0213 (4)
C130.28856 (19)0.91950 (19)0.52287 (16)0.0306 (5)
H13A0.34820.90880.57120.037*
C140.2990 (2)0.9631 (2)0.46368 (17)0.0348 (6)
H14A0.36510.98220.47240.042*
C150.2102 (2)0.97864 (18)0.39047 (16)0.0307 (5)
C160.1120 (2)0.95100 (18)0.37907 (15)0.0310 (5)
H16A0.05230.96150.33070.037*
C170.10259 (19)0.90789 (17)0.43939 (14)0.0266 (5)
H17A0.03640.88990.43130.032*
C180.19080 (17)0.89119 (14)0.51187 (13)0.0204 (4)
C19A0.1225 (4)1.2377 (3)0.7657 (3)0.0517 (14)0.720 (7)
H19A0.09991.28210.79030.078*0.720 (7)
H19B0.06741.22700.71270.078*0.720 (7)
H19C0.18461.25780.76380.078*0.720 (7)
C19B0.0958 (10)1.1186 (8)0.8589 (7)0.041 (3)0.280 (7)
H19D0.06531.16380.87700.062*0.280 (7)
H19E0.15421.09200.90380.062*0.280 (7)
H19F0.04371.07430.83040.062*0.280 (7)
C200.3707 (2)0.7605 (2)0.48061 (17)0.0380 (6)
H20A0.44210.74010.45990.057*
H20B0.36990.82400.47970.057*
H20C0.32980.74010.53430.057*
C21A0.0914 (6)1.0606 (6)0.2413 (4)0.088 (3)0.644 (8)
H21A0.09221.09140.19760.132*0.644 (8)
H21B0.05571.09590.26300.132*0.644 (8)
H21C0.05531.00520.22300.132*0.644 (8)
C21B0.3528 (8)1.0789 (7)0.3593 (5)0.046 (3)0.356 (8)
H21D0.40691.03480.38280.069*0.356 (8)
H21E0.35681.11880.39970.069*0.356 (8)
H21F0.36271.11130.32000.069*0.356 (8)
C220.1840 (2)0.63313 (17)0.64345 (17)0.0304 (5)
C230.3311 (2)0.71844 (17)0.77005 (16)0.0292 (5)
C240.42108 (18)0.78543 (16)0.68645 (13)0.0241 (4)
C250.1903 (2)0.54647 (19)0.51609 (16)0.0354 (6)
C260.2055 (2)0.68672 (18)0.43243 (16)0.0298 (5)
C270.4067 (2)0.7162 (2)0.54203 (17)0.0337 (6)
C280.3586 (2)0.5355 (2)0.48489 (17)0.0358 (6)
C290.5519 (2)0.6469 (2)0.6887 (2)0.0482 (9)
C300.5025 (3)0.5640 (2)0.79728 (19)0.0496 (9)
C310.3279 (2)0.49241 (17)0.67318 (14)0.0279 (5)
C320.5110 (2)0.46800 (19)0.66342 (17)0.0349 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01770 (7)0.01787 (8)0.02283 (8)0.00003 (6)0.00550 (6)0.00147 (6)
Ru20.01928 (8)0.02086 (9)0.03296 (10)0.00343 (6)0.00144 (7)0.00179 (7)
Ru30.02032 (8)0.02407 (9)0.02616 (9)0.00328 (6)0.00759 (7)0.00128 (7)
As10.01585 (9)0.01732 (10)0.02025 (10)0.00062 (7)0.00591 (7)0.00037 (7)
S1A0.0398 (6)0.0459 (10)0.0332 (8)0.0048 (6)0.0126 (5)0.0149 (7)
S1B0.0354 (14)0.0205 (14)0.0340 (18)0.0023 (10)0.0194 (13)0.0070 (12)
S20.0185 (2)0.0465 (4)0.0422 (4)0.0062 (2)0.0136 (2)0.0141 (3)
S3A0.0476 (15)0.096 (2)0.0475 (16)0.0226 (16)0.0324 (13)0.0400 (15)
S3B0.0366 (15)0.0180 (10)0.0270 (13)0.0077 (9)0.0141 (10)0.0006 (9)
O10.0322 (10)0.0328 (11)0.0653 (15)0.0072 (9)0.0187 (10)0.0065 (10)
O20.0441 (12)0.0440 (12)0.0280 (9)0.0035 (9)0.0140 (8)0.0056 (8)
O30.0236 (8)0.0315 (9)0.0343 (9)0.0055 (7)0.0076 (7)0.0005 (7)
O40.0418 (12)0.0471 (13)0.0463 (13)0.0171 (10)0.0054 (10)0.0021 (10)
O50.0484 (12)0.0421 (12)0.0313 (10)0.0182 (10)0.0184 (9)0.0060 (8)
O60.0493 (13)0.0502 (14)0.0566 (14)0.0135 (11)0.0372 (12)0.0157 (11)
O70.0352 (11)0.0450 (12)0.0453 (12)0.0132 (9)0.0082 (9)0.0149 (10)
O80.0220 (10)0.0402 (13)0.126 (3)0.0043 (9)0.0222 (13)0.0160 (15)
O90.102 (2)0.0504 (16)0.0331 (12)0.0215 (16)0.0115 (14)0.0067 (11)
O100.0381 (10)0.0284 (9)0.0358 (10)0.0038 (8)0.0175 (8)0.0041 (8)
O110.0326 (10)0.0340 (11)0.0604 (14)0.0103 (9)0.0170 (10)0.0042 (10)
C10.0207 (9)0.0228 (10)0.0247 (10)0.0012 (8)0.0075 (8)0.0025 (8)
C20.0207 (10)0.0232 (11)0.0366 (13)0.0001 (8)0.0071 (9)0.0081 (9)
C30.0212 (10)0.0389 (14)0.0320 (12)0.0036 (9)0.0103 (9)0.0154 (10)
C40.0303 (12)0.0445 (15)0.0236 (11)0.0045 (11)0.0127 (9)0.0080 (10)
C50.0275 (11)0.0287 (11)0.0221 (10)0.0028 (9)0.0115 (8)0.0014 (8)
C60.0182 (9)0.0215 (10)0.0219 (9)0.0016 (7)0.0065 (7)0.0024 (7)
C70.0187 (9)0.0244 (10)0.0293 (11)0.0014 (8)0.0107 (8)0.0061 (8)
C80.0199 (9)0.0250 (11)0.0308 (11)0.0034 (8)0.0107 (8)0.0073 (9)
C90.0159 (8)0.0260 (11)0.0286 (11)0.0002 (8)0.0085 (8)0.0010 (9)
C100.0194 (9)0.0286 (11)0.0320 (12)0.0034 (8)0.0112 (9)0.0041 (9)
C110.0232 (10)0.0204 (10)0.0305 (11)0.0006 (8)0.0113 (9)0.0041 (8)
C120.0183 (8)0.0194 (9)0.0239 (9)0.0011 (7)0.0082 (7)0.0006 (8)
C130.0186 (9)0.0385 (14)0.0305 (12)0.0009 (9)0.0082 (9)0.0102 (10)
C140.0268 (11)0.0443 (15)0.0373 (13)0.0052 (11)0.0184 (10)0.0125 (12)
C150.0375 (13)0.0320 (13)0.0284 (11)0.0056 (10)0.0205 (10)0.0041 (10)
C160.0304 (12)0.0334 (13)0.0217 (10)0.0002 (10)0.0061 (9)0.0022 (9)
C170.0204 (9)0.0283 (11)0.0245 (10)0.0008 (8)0.0053 (8)0.0005 (9)
C180.0175 (8)0.0195 (9)0.0214 (9)0.0002 (7)0.0070 (7)0.0002 (7)
C19A0.049 (3)0.038 (2)0.060 (3)0.011 (2)0.019 (2)0.014 (2)
C19B0.056 (7)0.039 (6)0.045 (6)0.009 (5)0.038 (6)0.018 (5)
C200.0217 (11)0.0568 (19)0.0373 (14)0.0036 (11)0.0154 (10)0.0004 (13)
C21A0.076 (5)0.154 (8)0.056 (4)0.075 (5)0.049 (4)0.070 (5)
C21B0.048 (5)0.056 (6)0.038 (4)0.030 (4)0.024 (4)0.015 (4)
C220.0268 (11)0.0225 (11)0.0387 (13)0.0009 (9)0.0128 (10)0.0026 (10)
C230.0262 (11)0.0232 (11)0.0324 (12)0.0014 (9)0.0089 (9)0.0039 (9)
C240.0196 (9)0.0244 (10)0.0227 (10)0.0005 (8)0.0055 (8)0.0012 (8)
C250.0307 (12)0.0340 (13)0.0295 (12)0.0010 (11)0.0045 (10)0.0033 (10)
C260.0310 (12)0.0309 (12)0.0308 (12)0.0063 (10)0.0173 (10)0.0019 (10)
C270.0325 (12)0.0368 (14)0.0372 (13)0.0020 (11)0.0208 (11)0.0092 (11)
C280.0241 (11)0.0380 (14)0.0339 (13)0.0042 (10)0.0044 (10)0.0052 (11)
C290.0221 (12)0.0287 (13)0.077 (2)0.0076 (10)0.0096 (13)0.0065 (14)
C300.0492 (18)0.0264 (13)0.0391 (15)0.0092 (12)0.0072 (13)0.0034 (11)
C310.0300 (11)0.0232 (11)0.0242 (10)0.0038 (9)0.0077 (9)0.0015 (8)
C320.0240 (11)0.0290 (12)0.0409 (14)0.0032 (10)0.0065 (10)0.0055 (11)
Geometric parameters (Å, º) top
Ru1—C231.890 (3)C2—C31.394 (4)
Ru1—C241.927 (2)C2—H2A0.9300
Ru1—C221.941 (3)C3—C41.389 (4)
Ru1—As12.4515 (3)C4—C51.383 (4)
Ru1—Ru22.8363 (3)C4—H4A0.9300
Ru1—Ru32.8953 (3)C5—C61.389 (3)
Ru2—C301.915 (3)C5—H5A0.9300
Ru2—C321.923 (3)C7—C81.387 (3)
Ru2—C311.930 (3)C7—C121.392 (3)
Ru2—C291.949 (3)C7—H7A0.9300
Ru2—Ru32.8583 (3)C8—C91.397 (3)
Ru3—C261.913 (3)C8—H8A0.9300
Ru3—C281.931 (3)C9—C101.391 (3)
Ru3—C271.939 (3)C10—C111.393 (3)
Ru3—C251.950 (3)C10—H10A0.9300
As1—C181.938 (2)C11—C121.389 (3)
As1—C61.938 (2)C11—H11A0.9300
As1—C121.943 (2)C13—C141.377 (4)
S1A—C31.762 (3)C13—C181.388 (3)
S1A—C19A1.783 (6)C13—H13A0.9300
S1B—C19B1.799 (12)C14—C151.397 (4)
S1B—C31.823 (4)C14—H14A0.9300
S2—C91.763 (2)C15—C161.388 (4)
S2—C201.787 (3)C16—C171.385 (4)
S3A—C151.771 (5)C16—H16A0.9300
S3A—C21A1.842 (8)C17—C181.389 (3)
S3B—C151.736 (7)C17—H17A0.9300
S3B—C21B1.858 (10)C19A—H19A0.9600
O1—C221.135 (3)C19A—H19B0.9600
O2—C231.141 (3)C19A—H19C0.9600
O3—C241.147 (3)C19B—H19D0.9600
O4—C251.131 (4)C19B—H19E0.9600
O5—C261.135 (3)C19B—H19F0.9600
O6—C271.137 (4)C20—H20A0.9600
O7—C281.135 (4)C20—H20B0.9600
O8—C291.140 (4)C20—H20C0.9600
O9—C301.135 (4)C21A—H21A0.9600
O10—C311.133 (3)C21A—H21B0.9600
O11—C321.136 (4)C21A—H21C0.9600
C1—C61.390 (3)C21B—H21D0.9600
C1—C21.400 (3)C21B—H21E0.9600
C1—H1A0.9300C21B—H21F0.9600
C23—Ru1—C2489.36 (11)C6—C5—H5A119.6
C23—Ru1—C2288.50 (12)C5—C6—C1119.1 (2)
C24—Ru1—C22177.65 (12)C5—C6—As1118.71 (18)
C23—Ru1—As1103.28 (8)C1—C6—As1121.99 (18)
C24—Ru1—As190.50 (7)C8—C7—C12121.2 (2)
C22—Ru1—As189.05 (8)C8—C7—H7A119.4
C23—Ru1—Ru297.75 (8)C12—C7—H7A119.4
C24—Ru1—Ru286.29 (7)C7—C8—C9120.0 (2)
C22—Ru1—Ru294.95 (8)C7—C8—H8A120.0
As1—Ru1—Ru2158.685 (11)C9—C8—H8A120.0
C23—Ru1—Ru3156.56 (8)C10—C9—C8119.2 (2)
C24—Ru1—Ru395.38 (7)C10—C9—S2124.06 (19)
C22—Ru1—Ru386.97 (9)C8—C9—S2116.71 (18)
As1—Ru1—Ru399.628 (9)C9—C10—C11120.2 (2)
Ru2—Ru1—Ru359.816 (7)C9—C10—H10A119.9
C30—Ru2—C32102.42 (13)C11—C10—H10A119.9
C30—Ru2—C3190.59 (14)C12—C11—C10120.9 (2)
C32—Ru2—C3191.14 (11)C12—C11—H11A119.5
C30—Ru2—C2992.33 (17)C10—C11—H11A119.5
C32—Ru2—C2990.99 (13)C11—C12—C7118.5 (2)
C31—Ru2—C29175.93 (12)C11—C12—As1122.26 (17)
C30—Ru2—Ru194.72 (10)C7—C12—As1119.22 (17)
C32—Ru2—Ru1162.43 (8)C14—C13—C18121.3 (2)
C31—Ru2—Ru184.77 (7)C14—C13—H13A119.3
C29—Ru2—Ru192.17 (9)C18—C13—H13A119.3
C30—Ru2—Ru3155.78 (10)C13—C14—C15119.9 (3)
C32—Ru2—Ru3101.59 (9)C13—C14—H14A120.0
C31—Ru2—Ru385.85 (7)C15—C14—H14A120.0
C29—Ru2—Ru390.32 (11)C16—C15—C14119.2 (2)
Ru1—Ru2—Ru361.117 (7)C16—C15—S3B119.3 (3)
C26—Ru3—C28102.56 (11)C14—C15—S3B121.4 (3)
C26—Ru3—C2788.52 (13)C16—C15—S3A123.0 (2)
C28—Ru3—C2797.09 (12)C14—C15—S3A117.7 (3)
C26—Ru3—C2589.71 (12)C17—C16—C15120.3 (2)
C28—Ru3—C2590.59 (13)C17—C16—H16A119.9
C27—Ru3—C25172.31 (12)C15—C16—H16A119.9
C26—Ru3—Ru2167.72 (8)C16—C17—C18120.8 (2)
C28—Ru3—Ru289.39 (8)C16—C17—H17A119.6
C27—Ru3—Ru287.17 (9)C18—C17—H17A119.6
C25—Ru3—Ru293.04 (8)C13—C18—C17118.5 (2)
C26—Ru3—Ru1109.00 (8)C13—C18—As1119.83 (17)
C28—Ru3—Ru1148.44 (8)C17—C18—As1121.63 (18)
C27—Ru3—Ru183.35 (8)S1B—C19B—H19D109.5
C25—Ru3—Ru190.17 (9)S1B—C19B—H19E109.5
Ru2—Ru3—Ru159.066 (7)H19D—C19B—H19E109.5
C18—As1—C6101.99 (10)S1B—C19B—H19F109.5
C18—As1—C12101.60 (9)H19D—C19B—H19F109.5
C6—As1—C12100.90 (9)H19E—C19B—H19F109.5
C18—As1—Ru1117.66 (7)S2—C20—H20A109.5
C6—As1—Ru1115.98 (7)S2—C20—H20B109.5
C12—As1—Ru1116.14 (7)H20A—C20—H20B109.5
C3—S1A—C19A100.6 (2)S2—C20—H20C109.5
C19B—S1B—C397.5 (4)H20A—C20—H20C109.5
C9—S2—C20103.61 (13)H20B—C20—H20C109.5
C15—S3A—C21A102.7 (3)S3B—C21B—H21D109.5
C15—S3B—C21B103.9 (4)S3B—C21B—H21E109.5
C6—C1—C2120.2 (2)H21D—C21B—H21E109.5
C6—C1—H1A119.9S3B—C21B—H21F109.5
C2—C1—H1A119.9H21D—C21B—H21F109.5
C3—C2—C1120.1 (2)H21E—C21B—H21F109.5
C3—C2—H2A119.9O1—C22—Ru1173.4 (3)
C1—C2—H2A119.9O2—C23—Ru1177.2 (2)
C4—C3—C2119.2 (2)O3—C24—Ru1173.4 (2)
C4—C3—S1A112.7 (2)O4—C25—Ru3172.1 (3)
C2—C3—S1A128.1 (2)O5—C26—Ru3176.2 (2)
C4—C3—S1B132.7 (3)O6—C27—Ru3172.9 (3)
C2—C3—S1B107.9 (3)O7—C28—Ru3176.7 (3)
C5—C4—C3120.6 (3)O8—C29—Ru2175.2 (3)
C5—C4—H4A119.7O9—C30—Ru2177.5 (4)
C3—C4—H4A119.7O10—C31—Ru2173.4 (2)
C4—C5—C6120.8 (2)O11—C32—Ru2178.3 (3)
C4—C5—H5A119.6
C23—Ru1—Ru2—C305.57 (14)C23—Ru1—As1—C623.31 (11)
C24—Ru1—Ru2—C3083.28 (14)C24—Ru1—As1—C666.15 (11)
C22—Ru1—Ru2—C3094.73 (15)C22—Ru1—As1—C6111.54 (12)
As1—Ru1—Ru2—C30165.11 (12)Ru2—Ru1—As1—C6147.20 (8)
Ru3—Ru1—Ru2—C30178.30 (12)Ru3—Ru1—As1—C6161.70 (8)
C23—Ru1—Ru2—C32161.7 (3)C23—Ru1—As1—C1294.95 (11)
C24—Ru1—Ru2—C32109.4 (3)C24—Ru1—As1—C12175.59 (11)
C22—Ru1—Ru2—C3272.6 (3)C22—Ru1—As1—C126.72 (12)
As1—Ru1—Ru2—C3227.6 (3)Ru2—Ru1—As1—C1294.54 (8)
Ru3—Ru1—Ru2—C3211.0 (3)Ru3—Ru1—As1—C1280.04 (8)
C23—Ru1—Ru2—C3184.59 (11)C6—C1—C2—C30.6 (3)
C24—Ru1—Ru2—C31173.44 (10)C1—C2—C3—C42.2 (4)
C22—Ru1—Ru2—C314.56 (11)C1—C2—C3—S1A177.68 (19)
As1—Ru1—Ru2—C31104.73 (8)C1—C2—C3—S1B172.8 (2)
Ru3—Ru1—Ru2—C3188.14 (7)C19A—S1A—C3—C4168.0 (3)
C23—Ru1—Ru2—C2998.09 (15)C19A—S1A—C3—C211.9 (3)
C24—Ru1—Ru2—C299.24 (14)C19A—S1A—C3—S1B1.3 (4)
C22—Ru1—Ru2—C29172.75 (15)C19B—S1B—C3—C410.2 (6)
As1—Ru1—Ru2—C2972.58 (13)C19B—S1B—C3—C2164.0 (5)
Ru3—Ru1—Ru2—C2989.17 (12)C19B—S1B—C3—S1A26.9 (5)
C23—Ru1—Ru2—Ru3172.73 (8)C2—C3—C4—C51.4 (4)
C24—Ru1—Ru2—Ru398.42 (7)S1A—C3—C4—C5178.5 (2)
C22—Ru1—Ru2—Ru383.58 (9)S1B—C3—C4—C5172.2 (3)
As1—Ru1—Ru2—Ru316.59 (3)C3—C4—C5—C61.0 (4)
C30—Ru2—Ru3—C2618.5 (5)C4—C5—C6—C12.7 (4)
C32—Ru2—Ru3—C26169.0 (4)C4—C5—C6—As1172.47 (19)
C31—Ru2—Ru3—C26100.6 (4)C2—C1—C6—C51.9 (3)
C29—Ru2—Ru3—C2678.0 (4)C2—C1—C6—As1173.11 (17)
Ru1—Ru2—Ru3—C2614.3 (4)C18—As1—C6—C5179.40 (18)
C30—Ru2—Ru3—C28174.8 (3)C12—As1—C6—C576.12 (19)
C32—Ru2—Ru3—C282.30 (13)Ru1—As1—C6—C550.2 (2)
C31—Ru2—Ru3—C2892.62 (12)C18—As1—C6—C15.6 (2)
C29—Ru2—Ru3—C2888.77 (14)C12—As1—C6—C198.90 (19)
Ru1—Ru2—Ru3—C28178.93 (9)Ru1—As1—C6—C1134.74 (17)
C30—Ru2—Ru3—C2788.1 (3)C12—C7—C8—C90.9 (4)
C32—Ru2—Ru3—C2799.43 (12)C7—C8—C9—C101.1 (4)
C31—Ru2—Ru3—C27170.25 (11)C7—C8—C9—S2179.2 (2)
C29—Ru2—Ru3—C278.36 (13)C20—S2—C9—C1017.3 (3)
Ru1—Ru2—Ru3—C2783.93 (8)C20—S2—C9—C8162.9 (2)
C30—Ru2—Ru3—C2584.2 (3)C8—C9—C10—C110.3 (4)
C32—Ru2—Ru3—C2588.26 (13)S2—C9—C10—C11180.0 (2)
C31—Ru2—Ru3—C252.06 (12)C9—C10—C11—C120.7 (4)
C29—Ru2—Ru3—C25179.33 (14)C10—C11—C12—C70.8 (4)
Ru1—Ru2—Ru3—C2588.37 (9)C10—C11—C12—As1179.52 (19)
C30—Ru2—Ru3—Ru14.1 (3)C8—C7—C12—C110.1 (4)
C32—Ru2—Ru3—Ru1176.63 (9)C8—C7—C12—As1179.7 (2)
C31—Ru2—Ru3—Ru186.31 (8)C18—As1—C12—C11107.0 (2)
C29—Ru2—Ru3—Ru192.30 (11)C6—As1—C12—C112.2 (2)
C23—Ru1—Ru3—C26164.8 (2)Ru1—As1—C12—C11124.06 (19)
C24—Ru1—Ru3—C2694.27 (11)C18—As1—C12—C772.6 (2)
C22—Ru1—Ru3—C2685.67 (12)C6—As1—C12—C7177.44 (19)
As1—Ru1—Ru3—C262.85 (9)Ru1—As1—C12—C756.3 (2)
Ru2—Ru1—Ru3—C26176.81 (9)C18—C13—C14—C150.8 (5)
C23—Ru1—Ru3—C2816.3 (3)C13—C14—C15—C161.1 (4)
C24—Ru1—Ru3—C2884.57 (19)C13—C14—C15—S3B174.3 (3)
C22—Ru1—Ru3—C2895.5 (2)C13—C14—C15—S3A176.8 (3)
As1—Ru1—Ru3—C28175.99 (18)C21B—S3B—C15—C16164.7 (4)
Ru2—Ru1—Ru3—C282.04 (18)C21B—S3B—C15—C1420.0 (5)
C23—Ru1—Ru3—C27109.1 (2)C21B—S3B—C15—S3A47 (2)
C24—Ru1—Ru3—C278.15 (11)C21A—S3A—C15—C164.9 (5)
C22—Ru1—Ru3—C27171.79 (12)C21A—S3A—C15—C14170.6 (4)
As1—Ru1—Ru3—C2783.27 (9)C21A—S3A—C15—S3B72 (2)
Ru2—Ru1—Ru3—C2790.69 (9)C14—C15—C16—C170.6 (4)
C23—Ru1—Ru3—C2575.1 (2)S3B—C15—C16—C17174.9 (3)
C24—Ru1—Ru3—C25175.98 (10)S3A—C15—C16—C17176.0 (3)
C22—Ru1—Ru3—C254.08 (11)C15—C16—C17—C180.3 (4)
As1—Ru1—Ru3—C2592.60 (8)C14—C13—C18—C170.1 (4)
Ru2—Ru1—Ru3—C2593.44 (8)C14—C13—C18—As1179.9 (2)
C23—Ru1—Ru3—Ru218.4 (2)C16—C17—C18—C130.7 (4)
C24—Ru1—Ru3—Ru282.54 (7)C16—C17—C18—As1179.5 (2)
C22—Ru1—Ru3—Ru297.52 (8)C6—As1—C18—C1379.8 (2)
As1—Ru1—Ru3—Ru2173.957 (10)C12—As1—C18—C13176.2 (2)
C23—Ru1—As1—C18144.39 (11)Ru1—As1—C18—C1348.3 (2)
C24—Ru1—As1—C1854.93 (10)C6—As1—C18—C1799.9 (2)
C22—Ru1—As1—C18127.38 (11)C12—As1—C18—C174.0 (2)
Ru2—Ru1—As1—C1826.12 (8)Ru1—As1—C18—C17131.97 (18)
Ru3—Ru1—As1—C1840.62 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10i0.932.463.317 (3)153
C20—H20A···O6ii0.962.593.153 (4)118
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ru3(C21H21AsS3)(CO)11]
Mr1055.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.3855 (2), 15.1185 (2), 19.0966 (3)
β (°) 118.221 (1)
V3)3659.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.51 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.378, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
71424, 16330, 11811
Rint0.034
(sin θ/λ)max1)0.813
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.02
No. of reflections16330
No. of parameters494
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.99, 0.85

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10i0.93002.46003.317 (3)153.00
C20—H20A···O6ii0.96002.59003.153 (4)118.00
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: E-2833-2010.

Thomson Reuters ResearcherID: A-5523-2009.

‡‡Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research Grant 1001/PJJAUH/811115. SSS thanks USM for a Research Officer position. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Golden Goose Grant 1001/PFIZIK/811012. CSY also thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1624–m1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90–m91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin., Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387–394.  Google Scholar
First citationShawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211–1216.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds