metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chlorido{2-[2-(cyclo­hexyl­carbamo­thioyl-κS)hydrazinyl­­idene-κN1]propano­ato(2−)}phenyl­tin(IV)

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 August 2010; accepted 6 August 2010; online 18 August 2010)

In the title organotin compound, [Sn(C6H5)(C10H15N3O2S)Cl(H2O)], the Sn atom is coordinated by the S, O, and imine N atoms of the dinegative tridentate ligand, a chloride ligand, the ipso-C atom of a phenyl ligand and by a water mol­ecule in a distorted octa­hedral coordination environment. Coordin­ated water mol­ecules link the organotin mol­ecules by forming O—H⋯O hydrogen bonds with both carbonyl and carboxyl­ate O atoms, leading to 12-membered {⋯OCO⋯HOH⋯}2 synthons. This results in the formation of supra­molecular chains along the c axis. The chains pack in the ac plane and stack along the b axis with links between layers afforded by N—H⋯Cl hydrogen bonds.

Related literature

For background to the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005[Gielen, M. & Tiekink, E. R. T. (2005). Editors. Metallotherapeutic Drugs and Metal- Based Diagnostic Agents: The Use of Metals in Medicine, pp. 421-439. Chichester: John Wiley & Sons.]). For related studies on organotin compounds, see: Affan et al. (2009[Affan, M. A., Wan Foo, S., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.]); Zukerman-Schpector et al. (2009[Zukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.]); Affan et al. (2010[Affan, M. A., Sam, N. B., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m924.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)(C10H15N3O2S)Cl(H2O)]

  • Mr = 490.57

  • Monoclinic, C 2/c

  • a = 16.3904 (9) Å

  • b = 19.2018 (10) Å

  • c = 13.1127 (7) Å

  • β = 108.4421 (7)°

  • V = 3915.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.613, Tmax = 0.746

  • 18020 measured reflections

  • 4498 independent reflections

  • 3853 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.091

  • S = 1.19

  • 4498 reflections

  • 239 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Sn—C11 2.123 (3)
Sn—O1 2.148 (2)
Sn—N3 2.195 (3)
Sn—O1w 2.224 (2)
Sn—Cl1 2.4524 (8)
Sn—S1 2.4598 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O1i 0.84 (5) 1.94 (3) 2.733 (3) 159 (6)
O1w—H2w⋯O2ii 0.83 (5) 1.81 (2) 2.645 (3) 174 (5)
N1—H1n⋯Cl1iii 0.86 (3) 2.59 (2) 3.407 (3) 161 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organotin compounds continue to attract considerable owing to the wide variety of biological properties (Gielen & Tiekink, 2005). In continuation of our work in this area (Affan et al., 2009; Zukerman-Schpector et al., 2009; Affan et al. 2010), the title organotin compound, (I), was synthesized and structurally characterized.

The Sn atom is coordinated via the S, O, and imine-N atoms of the dinegative tridentate ligand, thereby forming two planar five-membered chelate rings. The distorted CClNO2S octahedral coordination geometry is completed by an aqua ligand, a chloride atom, and the ipso-C atom of the phenyl group, Table 1. The greatest distortion from the ideal octahedral geometry is found in the O1–Sn–S1 angle of 153.73 (6) °, a feature which arises due to the restricted bite distances of the chelate rings.

The most notable feature of the crystal packing is the formation of O–H···O and N–H···Cl hydrogen bonds, Table 1. The water molecule hydrogen bonds to a carbonyl-O of one molecule and a carboxyl-O of another. Two-fold symmetry leads to the formation of a 12-membered {···OCO···HOH···}2 synthon and the formation of a supramolecular chain along the c axis, Fig. 2. The chains pack in the ac plane and stack along the b axis with the primary interactions between successive layers being hydrogen bonds of the type N–H···Cl, Fig. 3.

Related literature top

For background to the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005). For related studies on organotin compounds, see: Affan et al. (2009); Zukerman-Schpector et al. (2009); Affan et al. (2010).

Experimental top

The pyruvic acid cyclohexyl thiosemicarbazone ligand (0.243 g, 1.0 mmol) was dissolved in dry methanol (10 ml) in a Schlenk apparatus under a purified dry nitrogen atmosphere. Phenyltin(IV) trichloride (0.302 g, 1.0 mmol) dissolved in absolute methanol (10 ml) was added drop-wise. The resulting mixture was refluxed for 5 h. The resulting solid was filtered and dried in vacuo over silica gel. Re-crystallization was by slow evaporation of its methanol solution yielded light-brown crystals of (I). Yield 0.43 g, 78%: M.pt.: 477–479 K. Anal. Calc. for C16H22ClN3O3SSn: C, 39.17; H, 4.52; N, 8.56%. Found: C, 39.16; H, 4.50; N, 8.54%

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map, and was refined with distance restraints of O–H = 0.84 ±0.01 Å and N–H = 0.86±0.01 Å; the Uiso values were freely refined

Structure description top

Organotin compounds continue to attract considerable owing to the wide variety of biological properties (Gielen & Tiekink, 2005). In continuation of our work in this area (Affan et al., 2009; Zukerman-Schpector et al., 2009; Affan et al. 2010), the title organotin compound, (I), was synthesized and structurally characterized.

The Sn atom is coordinated via the S, O, and imine-N atoms of the dinegative tridentate ligand, thereby forming two planar five-membered chelate rings. The distorted CClNO2S octahedral coordination geometry is completed by an aqua ligand, a chloride atom, and the ipso-C atom of the phenyl group, Table 1. The greatest distortion from the ideal octahedral geometry is found in the O1–Sn–S1 angle of 153.73 (6) °, a feature which arises due to the restricted bite distances of the chelate rings.

The most notable feature of the crystal packing is the formation of O–H···O and N–H···Cl hydrogen bonds, Table 1. The water molecule hydrogen bonds to a carbonyl-O of one molecule and a carboxyl-O of another. Two-fold symmetry leads to the formation of a 12-membered {···OCO···HOH···}2 synthon and the formation of a supramolecular chain along the c axis, Fig. 2. The chains pack in the ac plane and stack along the b axis with the primary interactions between successive layers being hydrogen bonds of the type N–H···Cl, Fig. 3.

For background to the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005). For related studies on organotin compounds, see: Affan et al. (2009); Zukerman-Schpector et al. (2009); Affan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chains along c in the structure of (I). The O–H···O hydrogen bonds are shown as orange dashed lines.
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the c axis in (I). The N–H···Cl hydrogen bonds between layers are shown as brown dashed lines.
Aquachlorido{2-[2-(cyclohexylcarbamothioyl-κS)hydrazinylidene- κN1]propanoato(2-)}phenyltin(IV) top
Crystal data top
[Sn(C6H5)(C10H15N3O2S)Cl(H2O)]F(000) = 1968
Mr = 490.57Dx = 1.665 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8808 reflections
a = 16.3904 (9) Åθ = 2.6–28.3°
b = 19.2018 (10) ŵ = 1.57 mm1
c = 13.1127 (7) ÅT = 100 K
β = 108.4421 (7)°Block, light-brown
V = 3915.0 (4) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
4498 independent reflections
Radiation source: fine-focus sealed tube3853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scanθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.613, Tmax = 0.746k = 2424
18020 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.05P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
4498 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.54 e Å3
3 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Sn(C6H5)(C10H15N3O2S)Cl(H2O)]V = 3915.0 (4) Å3
Mr = 490.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.3904 (9) ŵ = 1.57 mm1
b = 19.2018 (10) ÅT = 100 K
c = 13.1127 (7) Å0.30 × 0.25 × 0.20 mm
β = 108.4421 (7)°
Data collection top
Bruker SMART APEX
diffractometer
4498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3853 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.746Rint = 0.034
18020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.54 e Å3
4498 reflectionsΔρmin = 0.53 e Å3
239 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.404486 (12)0.620716 (10)0.467538 (16)0.01146 (8)
Cl10.34899 (5)0.69580 (4)0.30936 (6)0.01767 (16)
S10.32710 (5)0.68215 (4)0.57359 (6)0.01380 (16)
O10.41904 (13)0.54024 (11)0.36085 (18)0.0163 (5)
O20.34146 (15)0.47501 (12)0.22370 (19)0.0209 (5)
O1W0.43443 (15)0.53800 (13)0.5926 (2)0.0201 (5)
H1W0.475 (3)0.512 (3)0.590 (5)0.09 (2)*
H2W0.406 (3)0.531 (3)0.634 (3)0.066 (17)*
N10.16705 (17)0.65474 (14)0.5583 (2)0.0158 (5)
H1N0.176 (2)0.6892 (13)0.602 (2)0.019 (10)*
N20.21381 (16)0.58361 (13)0.4501 (2)0.0151 (5)
N30.27999 (16)0.56696 (13)0.4134 (2)0.0140 (5)
C10.0801 (2)0.62496 (16)0.5200 (3)0.0182 (7)
H1A0.08520.57350.51190.022*
C20.0277 (2)0.6546 (2)0.4129 (3)0.0275 (8)
H2A0.05760.64590.35930.033*
H2B0.02190.70560.41950.033*
C30.0616 (3)0.6211 (3)0.3750 (4)0.0455 (12)
H3A0.09580.64220.30580.055*
H3B0.05580.57070.36300.055*
C40.1082 (2)0.6313 (2)0.4576 (4)0.0354 (10)
H4A0.12070.68150.46250.042*
H4B0.16370.60610.43390.042*
C50.0553 (2)0.6053 (2)0.5669 (4)0.0324 (9)
H5A0.04960.55400.56440.039*
H5B0.08520.61630.61970.039*
C60.0344 (2)0.63821 (19)0.6035 (3)0.0230 (7)
H6A0.02940.68900.61330.028*
H6B0.06870.61810.67350.028*
C70.2306 (2)0.63535 (16)0.5207 (3)0.0140 (6)
C80.27078 (19)0.52131 (16)0.3388 (2)0.0147 (6)
C90.1909 (2)0.48168 (17)0.2862 (3)0.0204 (7)
H9A0.14280.50300.30410.031*
H9B0.19820.43340.31160.031*
H9C0.17890.48250.20810.031*
C100.34849 (19)0.51063 (16)0.3033 (3)0.0155 (6)
C110.53637 (18)0.64917 (15)0.5141 (2)0.0131 (6)
C120.5831 (2)0.66164 (17)0.6212 (3)0.0198 (7)
H12A0.55580.65840.67500.024*
C130.6698 (2)0.67889 (19)0.6493 (3)0.0226 (7)
H130.70130.68840.72220.027*
C140.7103 (2)0.68218 (19)0.5720 (3)0.0230 (7)
H140.76970.69350.59190.028*
C150.6644 (2)0.66898 (18)0.4644 (3)0.0221 (7)
H150.69230.67080.41120.027*
C160.5775 (2)0.65323 (17)0.4362 (3)0.0187 (7)
H160.54570.64510.36290.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01020 (12)0.01204 (12)0.01312 (13)0.00088 (7)0.00509 (8)0.00039 (7)
Cl10.0226 (4)0.0173 (4)0.0131 (4)0.0036 (3)0.0056 (3)0.0019 (3)
S10.0125 (3)0.0155 (4)0.0143 (4)0.0011 (3)0.0054 (3)0.0021 (3)
O10.0140 (10)0.0154 (11)0.0216 (12)0.0001 (8)0.0087 (9)0.0032 (9)
O20.0226 (12)0.0207 (12)0.0239 (13)0.0031 (9)0.0137 (10)0.0074 (10)
O1W0.0162 (11)0.0218 (12)0.0270 (13)0.0088 (9)0.0137 (10)0.0105 (10)
N10.0133 (12)0.0166 (14)0.0200 (14)0.0002 (10)0.0089 (11)0.0040 (11)
N20.0128 (12)0.0174 (13)0.0187 (14)0.0013 (10)0.0099 (10)0.0015 (11)
N30.0147 (12)0.0135 (12)0.0163 (13)0.0017 (10)0.0083 (10)0.0009 (10)
C10.0138 (15)0.0158 (16)0.0284 (19)0.0014 (11)0.0117 (14)0.0014 (13)
C20.0185 (17)0.045 (2)0.0203 (18)0.0013 (15)0.0084 (14)0.0053 (16)
C30.021 (2)0.078 (4)0.035 (3)0.0079 (19)0.0054 (17)0.024 (2)
C40.0161 (17)0.045 (3)0.048 (3)0.0062 (16)0.0146 (17)0.0146 (19)
C50.0234 (19)0.0272 (19)0.056 (3)0.0001 (15)0.0258 (19)0.0030 (18)
C60.0174 (16)0.0292 (18)0.0270 (19)0.0058 (14)0.0136 (14)0.0069 (15)
C70.0163 (15)0.0127 (14)0.0148 (15)0.0012 (11)0.0073 (12)0.0023 (12)
C80.0147 (14)0.0155 (15)0.0151 (15)0.0018 (11)0.0066 (12)0.0004 (12)
C90.0184 (16)0.0188 (17)0.0260 (18)0.0035 (13)0.0100 (14)0.0066 (14)
C100.0165 (15)0.0137 (15)0.0184 (16)0.0006 (12)0.0085 (12)0.0009 (12)
C110.0113 (13)0.0123 (14)0.0164 (15)0.0010 (11)0.0056 (11)0.0023 (12)
C120.0166 (15)0.0265 (18)0.0186 (17)0.0005 (13)0.0090 (13)0.0020 (14)
C130.0179 (16)0.034 (2)0.0126 (16)0.0060 (14)0.0001 (13)0.0006 (14)
C140.0123 (15)0.0324 (19)0.0227 (18)0.0044 (13)0.0034 (13)0.0030 (15)
C150.0147 (15)0.0342 (19)0.0198 (17)0.0017 (14)0.0088 (13)0.0030 (15)
C160.0162 (15)0.0255 (18)0.0138 (16)0.0002 (13)0.0042 (12)0.0013 (13)
Geometric parameters (Å, º) top
Sn—C112.123 (3)C3—H3B0.9900
Sn—O12.148 (2)C4—C51.506 (6)
Sn—N32.195 (3)C4—H4A0.9900
Sn—O1w2.224 (2)C4—H4B0.9900
Sn—Cl12.4524 (8)C5—C61.532 (5)
Sn—S12.4598 (7)C5—H5A0.9900
S1—C71.759 (3)C5—H5B0.9900
O1—C101.295 (4)C6—H6A0.9900
O2—C101.223 (4)C6—H6B0.9900
O1W—H1W0.84 (5)C8—C91.482 (4)
O1W—H2W0.83 (5)C8—C101.502 (4)
N1—C71.339 (4)C9—H9A0.9800
N1—C11.469 (4)C9—H9B0.9800
N1—H1N0.86 (3)C9—H9C0.9800
N2—C71.326 (4)C11—C121.391 (4)
N2—N31.357 (3)C11—C161.392 (4)
N3—C81.286 (4)C12—C131.390 (4)
C1—C21.507 (5)C12—H12A0.9500
C1—C61.530 (4)C13—C141.377 (5)
C1—H1A1.0000C13—H130.9500
C2—C31.531 (5)C14—C151.395 (5)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C161.387 (4)
C3—C41.524 (6)C15—H150.9500
C3—H3A0.9900C16—H160.9500
C11—Sn—O193.42 (10)C5—C4—H4B109.3
C11—Sn—N3166.35 (10)C3—C4—H4B109.3
O1—Sn—N374.60 (9)H4A—C4—H4B108.0
C11—Sn—O1W90.27 (10)C4—C5—C6111.6 (3)
O1—Sn—O1W85.55 (9)C4—C5—H5A109.3
N3—Sn—O1W82.43 (9)C6—C5—H5A109.3
C11—Sn—Cl199.40 (8)C4—C5—H5B109.3
O1—Sn—Cl187.71 (6)C6—C5—H5B109.3
N3—Sn—Cl186.84 (7)H5A—C5—H5B108.0
O1W—Sn—Cl1168.53 (7)C1—C6—C5110.2 (3)
C11—Sn—S1111.98 (8)C1—C6—H6A109.6
O1—Sn—S1153.73 (6)C5—C6—H6A109.6
N3—Sn—S179.37 (7)C1—C6—H6B109.6
O1W—Sn—S187.63 (6)C5—C6—H6B109.6
Cl1—Sn—S194.39 (3)H6A—C6—H6B108.1
C7—S1—Sn95.30 (10)N2—C7—N1116.8 (3)
C10—O1—Sn115.62 (18)N2—C7—S1128.3 (2)
Sn—O1W—H1W113 (4)N1—C7—S1114.8 (2)
Sn—O1W—H2W124 (4)N3—C8—C9125.3 (3)
H1W—O1W—H2W123 (5)N3—C8—C10114.9 (3)
C7—N1—C1123.4 (3)C9—C8—C10119.8 (3)
C7—N1—H1N119 (3)C8—C9—H9A109.5
C1—N1—H1N118 (2)C8—C9—H9B109.5
C7—N2—N3114.3 (2)H9A—C9—H9B109.5
C8—N3—N2121.0 (3)C8—C9—H9C109.5
C8—N3—Sn116.1 (2)H9A—C9—H9C109.5
N2—N3—Sn122.70 (19)H9B—C9—H9C109.5
N1—C1—C2112.1 (3)O2—C10—O1124.6 (3)
N1—C1—C6109.4 (3)O2—C10—C8118.7 (3)
C2—C1—C6109.9 (3)O1—C10—C8116.6 (3)
N1—C1—H1A108.4C12—C11—C16119.4 (3)
C2—C1—H1A108.4C12—C11—Sn121.3 (2)
C6—C1—H1A108.4C16—C11—Sn119.2 (2)
C1—C2—C3110.4 (3)C13—C12—C11119.9 (3)
C1—C2—H2A109.6C13—C12—H12A120.0
C3—C2—H2A109.6C11—C12—H12A120.0
C1—C2—H2B109.6C14—C13—C12120.4 (3)
C3—C2—H2B109.6C14—C13—H13119.8
H2A—C2—H2B108.1C12—C13—H13119.8
C4—C3—C2111.0 (3)C13—C14—C15120.3 (3)
C4—C3—H3A109.4C13—C14—H14119.9
C2—C3—H3A109.4C15—C14—H14119.9
C4—C3—H3B109.4C16—C15—C14119.3 (3)
C2—C3—H3B109.4C16—C15—H15120.3
H3A—C3—H3B108.0C14—C15—H15120.3
C5—C4—C3111.5 (3)C15—C16—C11120.7 (3)
C5—C4—H4A109.3C15—C16—H16119.7
C3—C4—H4A109.3C11—C16—H16119.7
C11—Sn—S1—C7173.02 (13)N3—N2—C7—S11.7 (4)
O1—Sn—S1—C78.72 (18)C1—N1—C7—N24.2 (5)
N3—Sn—S1—C70.95 (12)C1—N1—C7—S1176.4 (2)
O1W—Sn—S1—C783.69 (12)Sn—S1—C7—N21.9 (3)
Cl1—Sn—S1—C785.00 (10)Sn—S1—C7—N1178.8 (2)
C11—Sn—O1—C10173.8 (2)N2—N3—C8—C90.9 (5)
N3—Sn—O1—C1012.9 (2)Sn—N3—C8—C9176.5 (2)
O1W—Sn—O1—C1096.2 (2)N2—N3—C8—C10177.5 (3)
Cl1—Sn—O1—C1074.5 (2)Sn—N3—C8—C101.9 (3)
S1—Sn—O1—C1020.8 (3)Sn—O1—C10—O2164.0 (3)
C7—N2—N3—C8174.9 (3)Sn—O1—C10—C816.3 (3)
C7—N2—N3—Sn0.4 (4)N3—C8—C10—O2170.7 (3)
C11—Sn—N3—C836.8 (6)C9—C8—C10—O27.9 (5)
O1—Sn—N3—C87.6 (2)N3—C8—C10—O19.6 (4)
O1W—Sn—N3—C895.0 (2)C9—C8—C10—O1171.9 (3)
Cl1—Sn—N3—C880.9 (2)O1—Sn—C11—C12135.8 (3)
S1—Sn—N3—C8176.0 (2)N3—Sn—C11—C12107.6 (5)
C11—Sn—N3—N2147.7 (4)O1W—Sn—C11—C1250.2 (3)
O1—Sn—N3—N2176.9 (2)Cl1—Sn—C11—C12136.0 (2)
O1W—Sn—N3—N289.5 (2)S1—Sn—C11—C1237.3 (3)
Cl1—Sn—N3—N294.6 (2)O1—Sn—C11—C1642.1 (3)
S1—Sn—N3—N20.5 (2)N3—Sn—C11—C1670.3 (5)
C7—N1—C1—C277.7 (4)O1W—Sn—C11—C16127.7 (3)
C7—N1—C1—C6160.1 (3)Cl1—Sn—C11—C1646.1 (3)
N1—C1—C2—C3178.8 (3)S1—Sn—C11—C16144.8 (2)
C6—C1—C2—C359.3 (4)C16—C11—C12—C130.9 (5)
C1—C2—C3—C457.3 (5)Sn—C11—C12—C13178.8 (3)
C2—C3—C4—C554.5 (5)C11—C12—C13—C141.5 (5)
C3—C4—C5—C654.2 (5)C12—C13—C14—C150.7 (6)
N1—C1—C6—C5178.0 (3)C13—C14—C15—C160.7 (5)
C2—C1—C6—C558.5 (4)C14—C15—C16—C111.3 (5)
C4—C5—C6—C156.1 (4)C12—C11—C16—C150.5 (5)
N3—N2—C7—N1178.9 (3)Sn—C11—C16—C15177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O1i0.84 (5)1.94 (3)2.733 (3)159 (6)
O1w—H2w···O2ii0.83 (5)1.81 (2)2.645 (3)174 (5)
N1—H1n···Cl1iii0.86 (3)2.59 (2)3.407 (3)161 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)(C10H15N3O2S)Cl(H2O)]
Mr490.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.3904 (9), 19.2018 (10), 13.1127 (7)
β (°) 108.4421 (7)
V3)3915.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.613, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
18020, 4498, 3853
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.091, 1.19
No. of reflections4498
No. of parameters239
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—C112.123 (3)Sn—O1w2.224 (2)
Sn—O12.148 (2)Sn—Cl12.4524 (8)
Sn—N32.195 (3)Sn—S12.4598 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O1i0.84 (5)1.94 (3)2.733 (3)159 (6)
O1w—H2w···O2ii0.83 (5)1.81 (2)2.645 (3)174 (5)
N1—H1n···Cl1iii0.86 (3)2.587 (16)3.407 (3)161 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: maaffan@frst.unimas.my.

Acknowledgements

This work was financially supported by the Ministry of Science Technology and Innovation (MOSTI) under a research grant (No. 06–01-09-SF0046). The authors would like to thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work and the University of Malaya for support of the crystallographic facility.

References

First citationAffan, M. A., Sam, N. B., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m924.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAffan, M. A., Wan Foo, S., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGielen, M. & Tiekink, E. R. T. (2005). Editors. Metallotherapeutic Drugs and Metal- Based Diagnostic Agents: The Use of Metals in Medicine, pp. 421–439. Chichester: John Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds