organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-(2-Pyrid­yl­oxy)phenanthren-9-ol

aDepartment of Chemistry, The New College (Autonomous), Chennai 600 014, India, and bDepartment of Physics, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 2 August 2010; accepted 19 August 2010; online 28 August 2010)

In the title compound, C19H13NO2, the pyridyl ring makes a dihedral angle of 87.04 (6)° with the plane of the phenanthrene ring system. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of heterocyclic compounds containing a pyridine ring, see: Amr & Abdulla (2006[Amr, A. G. E. & Abdulla, M. M. (2006). Bioorg. Med. Chem. 14, 4341-4352.]); Borgna et al. (1993[Borgna, P., Pregnolato, M., Gamba, I. A. & Mellerio, G. (1993). J. Heterocycl. Chem. 30, 1079-1084.]); Goda et al. (2004[Goda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845-1852.]); Kamal et al. (2007[Kamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004-1013.]). For related structures, see: Krivopalov & Shkurko (2005[Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339-379.]); Li & Flood (2008[Li, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed. 47, 2649-2652.]); Meudtner & Hecht (2008[Meudtner, R. M. & Hecht, S. (2008). Angew. Chem. Int. Ed. 47, 4926-4930.]); Richardson et al. (2008[Richardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534-2537.]); Schweinfurth et al. (2008[Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203-2205.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13NO2

  • Mr = 287.30

  • Monoclinic, P 21 /c

  • a = 8.9379 (6) Å

  • b = 8.6433 (10) Å

  • c = 18.389 (3) Å

  • β = 96.088 (8)°

  • V = 1412.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2530 measured reflections

  • 2384 independent reflections

  • 1828 reflections with I > 2σ(I)

  • Rint = 0.036

  • 2 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.158

  • S = 1.07

  • 2384 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6/C7/C12/C13/C18/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.59 3.475 (3) 159
C10—H10⋯Cg1ii 0.93 2.86 3.691 (3) 150
C15—H15⋯Cg2iii 0.93 2.80 3.537 (3) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Heterocyclic compounds containing the pyridine ring are reported to possess a diverse range of biological activities such as antimicrobial, antitumor and anti–inflammatory (Amr & Abdulla, 2006; Borgna et al., 1993; Goda et al., 2004; Kamal et al., 2007) properties. Pyridyl functionalized 1,2,3–triazoles have begun attracting significant attention in a range of areas including anion recognition (Li & Flood, 2008), stimuli responsive foldamers (Meudtner & Hecht, 2008), drug discovery (Krivopalov & Shkurko, 2005) and coordination chemistry (Richardson et al., 2008; Schweinfurth et al., 2008). Against this background the structure of the title compound was determined by X–ray diffraction. Here we report the crystal structure of the title compound (Fig. 1).

The phenanthrene plane is essentially planar, with a mean deviation of 0.011 (2) |%A from the least-squares plane defined by the fourteen constituent atoms. The dihedral angle formed by the phenanthrene plane and the pyridyl ring is 87.04 (6)°. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the pyidyl H atom and the oxygen of the hydroxyl group, with a C3—H3···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by two intermolecular C—H···π interactions; the first one between the benzene H atom of the phenanthrene unit and the pyridyl ring, with a C10—H10···Cg1, the second one between the benzene H atom of the phenanthrene unit and the central benzene ring of a neighbouring molecule, with a C15—H15···Cg2 (Table 1; Cg1 and Cg2 are the centroids of the N1/C1—C5 pyridyl ring and the C6/C7/C12/C13/C18/C19 benzene ring, respectively).

Related literature top

For the biological activity of heterocyclic compounds containing a pyridine ring, see: Amr & Abdulla (2006); Borgna et al. (1993); Goda et al. (2004); Kamal et al. (2007). For related structures, see : Krivopalov & Shkurko (2005); Li & Flood (2008); Meudtner & Hecht (2008); Richardson et al. (2008); Schweinfurth et al. (2008).

Experimental top

To a solution of 2–pyridyl magnesium bromide in dry THF at 273° under nitrogen atomsphere, solution of phenanthren-9,10-dione in dry THF was added dropwise. After the addition, the mixture was stirred at room temp under nitrogen atmosphere for 3 h. After the completion of reaction as evidenced by TLC, the reaction was quenched with saturated solution of ammonium chloride and the mixture was extracted into diethyl ether. The organic layer was concentrated at reduced pressure. The residue was purified by coloumn chromotography (hexane-ethyl acetate, 9:1 v/v) to afford the title compound as a pale yellow solid (yield 75%, m.p. 418° K). Single crystals suitable for X–ray diffraction was recrystallized from mixture of dichlromehane-hexane (8: 2 v/v) as solvent.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Structure description top

Heterocyclic compounds containing the pyridine ring are reported to possess a diverse range of biological activities such as antimicrobial, antitumor and anti–inflammatory (Amr & Abdulla, 2006; Borgna et al., 1993; Goda et al., 2004; Kamal et al., 2007) properties. Pyridyl functionalized 1,2,3–triazoles have begun attracting significant attention in a range of areas including anion recognition (Li & Flood, 2008), stimuli responsive foldamers (Meudtner & Hecht, 2008), drug discovery (Krivopalov & Shkurko, 2005) and coordination chemistry (Richardson et al., 2008; Schweinfurth et al., 2008). Against this background the structure of the title compound was determined by X–ray diffraction. Here we report the crystal structure of the title compound (Fig. 1).

The phenanthrene plane is essentially planar, with a mean deviation of 0.011 (2) |%A from the least-squares plane defined by the fourteen constituent atoms. The dihedral angle formed by the phenanthrene plane and the pyridyl ring is 87.04 (6)°. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the pyidyl H atom and the oxygen of the hydroxyl group, with a C3—H3···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by two intermolecular C—H···π interactions; the first one between the benzene H atom of the phenanthrene unit and the pyridyl ring, with a C10—H10···Cg1, the second one between the benzene H atom of the phenanthrene unit and the central benzene ring of a neighbouring molecule, with a C15—H15···Cg2 (Table 1; Cg1 and Cg2 are the centroids of the N1/C1—C5 pyridyl ring and the C6/C7/C12/C13/C18/C19 benzene ring, respectively).

For the biological activity of heterocyclic compounds containing a pyridine ring, see: Amr & Abdulla (2006); Borgna et al. (1993); Goda et al. (2004); Kamal et al. (2007). For related structures, see : Krivopalov & Shkurko (2005); Li & Flood (2008); Meudtner & Hecht (2008); Richardson et al. (2008); Schweinfurth et al. (2008).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) -x + 1, -y + 1, - z + 1; (ii) x, -y + 1/2, z + 1/2; (iii) - x + 2, y + 1/2, - z + 3/2; (iv) x, - y + 1/2, z - 1/2; (v) - x + 2, y - 1/2, - z + 3/2.]
10-(2-Pyridyloxy)phenanthren-9-ol top
Crystal data top
C19H13NO2F(000) = 600
Mr = 287.30Dx = 1.351 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.9379 (6) Åθ = 20–32°
b = 8.6433 (10) ŵ = 0.71 mm1
c = 18.389 (3) ÅT = 293 K
β = 96.088 (8)°Block, yellow
V = 1412.6 (3) Å30.3 × 0.25 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 64.9°, θmin = 4.8°
Graphite monochromatorh = 010
ω–2θ scank = 010
2530 measured reflectionsl = 2121
2384 independent reflections2 standard reflections every 100 reflections
1828 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0879P)2 + 0.3509P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2384 reflectionsΔρmax = 0.34 e Å3
200 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0161 (14)
Crystal data top
C19H13NO2V = 1412.6 (3) Å3
Mr = 287.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.9379 (6) ŵ = 0.71 mm1
b = 8.6433 (10) ÅT = 293 K
c = 18.389 (3) Å0.3 × 0.25 × 0.2 mm
β = 96.088 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
2530 measured reflections2 standard reflections every 100 reflections
2384 independent reflections intensity decay: none
1828 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
2384 reflectionsΔρmin = 0.22 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28079 (19)0.0991 (2)0.50744 (9)0.0552 (5)
O10.48937 (16)0.09045 (15)0.58522 (7)0.0539 (4)
O20.75971 (19)0.19460 (18)0.54090 (8)0.0639 (5)
H20.68700.15720.51610.096*
C10.1729 (3)0.1774 (3)0.46753 (13)0.0687 (7)
H10.09950.12130.43920.082*
C20.1638 (3)0.3354 (3)0.46580 (14)0.0734 (7)
H2A0.08760.38540.43640.088*
C30.2706 (3)0.4179 (3)0.50877 (13)0.0675 (7)
H30.26660.52540.50940.081*
C40.3832 (3)0.3413 (3)0.55083 (12)0.0566 (6)
H40.45660.39490.58030.068*
C50.3832 (2)0.1817 (2)0.54766 (10)0.0470 (5)
C60.5977 (2)0.1611 (2)0.63482 (10)0.0474 (5)
C70.5655 (2)0.1757 (2)0.70924 (11)0.0480 (5)
C80.4266 (3)0.1302 (3)0.73138 (13)0.0596 (6)
H80.35360.08840.69720.072*
C90.3968 (3)0.1465 (3)0.80255 (14)0.0690 (7)
H90.30420.11630.81660.083*
C100.5066 (3)0.2086 (3)0.85376 (14)0.0711 (7)
H100.48700.21970.90210.085*
C110.6431 (3)0.2533 (3)0.83355 (12)0.0619 (6)
H110.71520.29340.86870.074*
C120.6769 (2)0.2399 (2)0.76057 (11)0.0493 (5)
C130.8179 (2)0.2907 (2)0.73679 (11)0.0501 (5)
C140.9345 (3)0.3569 (3)0.78452 (13)0.0637 (6)
H140.91970.37170.83330.076*
C151.0677 (3)0.3998 (3)0.76122 (15)0.0724 (7)
H151.14280.44210.79420.087*
C161.0924 (3)0.3807 (3)0.68872 (15)0.0711 (7)
H161.18370.41070.67310.085*
C170.9837 (3)0.3184 (3)0.64021 (13)0.0610 (6)
H171.00130.30560.59160.073*
C180.8444 (2)0.2729 (2)0.66282 (11)0.0499 (5)
C190.7291 (2)0.2060 (2)0.61153 (10)0.0490 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0622 (11)0.0553 (11)0.0456 (10)0.0030 (9)0.0056 (8)0.0065 (8)
O10.0661 (9)0.0412 (8)0.0506 (8)0.0005 (6)0.0119 (7)0.0040 (6)
O20.0903 (11)0.0595 (9)0.0425 (8)0.0129 (8)0.0099 (7)0.0048 (7)
C10.0683 (14)0.0799 (17)0.0541 (13)0.0067 (13)0.0111 (11)0.0061 (12)
C20.0766 (16)0.0800 (18)0.0613 (15)0.0221 (14)0.0028 (12)0.0118 (13)
C30.0822 (16)0.0522 (14)0.0689 (15)0.0120 (12)0.0120 (13)0.0076 (11)
C40.0687 (14)0.0476 (12)0.0531 (12)0.0002 (10)0.0046 (10)0.0013 (10)
C50.0572 (12)0.0475 (11)0.0356 (10)0.0030 (9)0.0022 (8)0.0007 (8)
C60.0610 (12)0.0360 (10)0.0427 (10)0.0001 (9)0.0062 (9)0.0026 (8)
C70.0594 (12)0.0371 (10)0.0463 (11)0.0049 (9)0.0004 (9)0.0001 (8)
C80.0681 (14)0.0507 (12)0.0596 (13)0.0014 (11)0.0040 (11)0.0012 (10)
C90.0797 (16)0.0602 (15)0.0705 (16)0.0034 (12)0.0234 (13)0.0006 (12)
C100.1028 (19)0.0614 (15)0.0528 (13)0.0004 (14)0.0252 (13)0.0022 (11)
C110.0860 (17)0.0543 (13)0.0444 (12)0.0012 (12)0.0023 (11)0.0055 (10)
C120.0646 (13)0.0387 (10)0.0431 (11)0.0052 (9)0.0009 (9)0.0002 (8)
C130.0608 (13)0.0403 (10)0.0471 (11)0.0044 (9)0.0051 (9)0.0016 (9)
C140.0711 (15)0.0630 (14)0.0534 (13)0.0028 (12)0.0099 (11)0.0073 (11)
C150.0687 (15)0.0661 (16)0.0781 (17)0.0094 (13)0.0118 (13)0.0095 (13)
C160.0618 (14)0.0638 (15)0.0872 (18)0.0101 (12)0.0058 (12)0.0036 (14)
C170.0701 (14)0.0528 (13)0.0607 (13)0.0049 (11)0.0100 (11)0.0015 (11)
C180.0617 (13)0.0386 (10)0.0483 (11)0.0018 (9)0.0008 (9)0.0011 (8)
C190.0679 (13)0.0386 (11)0.0401 (11)0.0022 (9)0.0028 (9)0.0016 (8)
Geometric parameters (Å, º) top
N1—C51.323 (3)C8—H80.9300
N1—C11.333 (3)C9—C101.394 (4)
O1—C51.364 (2)C9—H90.9300
O1—C61.398 (2)C10—C111.368 (4)
O2—C191.359 (2)C10—H100.9300
O2—H20.8200C11—C121.411 (3)
C1—C21.368 (4)C11—H110.9300
C1—H10.9300C12—C131.445 (3)
C2—C31.372 (4)C13—C141.411 (3)
C2—H2A0.9300C13—C181.413 (3)
C3—C41.373 (3)C14—C151.359 (3)
C3—H30.9300C14—H140.9300
C4—C51.381 (3)C15—C161.384 (4)
C4—H40.9300C15—H150.9300
C6—C191.350 (3)C16—C171.359 (3)
C6—C71.434 (3)C16—H160.9300
C7—C81.403 (3)C17—C181.410 (3)
C7—C121.411 (3)C17—H170.9300
C8—C91.370 (3)C18—C191.441 (3)
C5—N1—C1116.8 (2)C11—C10—C9120.6 (2)
C5—O1—C6118.32 (15)C11—C10—H10119.7
C19—O2—H2109.5C9—C10—H10119.7
N1—C1—C2123.9 (2)C10—C11—C12121.5 (2)
N1—C1—H1118.1C10—C11—H11119.3
C2—C1—H1118.1C12—C11—H11119.3
C1—C2—C3118.0 (2)C7—C12—C11117.5 (2)
C1—C2—H2A121.0C7—C12—C13119.54 (19)
C3—C2—H2A121.0C11—C12—C13122.99 (19)
C2—C3—C4119.8 (2)C14—C13—C18117.1 (2)
C2—C3—H3120.1C14—C13—C12123.0 (2)
C4—C3—H3120.1C18—C13—C12119.90 (19)
C3—C4—C5117.5 (2)C15—C14—C13121.9 (2)
C3—C4—H4121.2C15—C14—H14119.0
C5—C4—H4121.2C13—C14—H14119.0
N1—C5—O1111.97 (18)C14—C15—C16120.4 (2)
N1—C5—C4123.98 (19)C14—C15—H15119.8
O1—C5—C4124.04 (18)C16—C15—H15119.8
C19—C6—O1118.98 (18)C17—C16—C15120.2 (2)
C19—C6—C7123.17 (19)C17—C16—H16119.9
O1—C6—C7117.78 (18)C15—C16—H16119.9
C8—C7—C12119.97 (19)C16—C17—C18120.6 (2)
C8—C7—C6121.70 (19)C16—C17—H17119.7
C12—C7—C6118.32 (19)C18—C17—H17119.7
C9—C8—C7121.1 (2)C17—C18—C13119.8 (2)
C9—C8—H8119.5C17—C18—C19120.7 (2)
C7—C8—H8119.5C13—C18—C19119.50 (19)
C8—C9—C10119.4 (2)C6—C19—O2123.53 (19)
C8—C9—H9120.3C6—C19—C18119.55 (18)
C10—C9—H9120.3O2—C19—C18116.91 (18)
C5—N1—C1—C20.4 (3)C10—C11—C12—C71.2 (3)
N1—C1—C2—C31.2 (4)C10—C11—C12—C13177.9 (2)
C1—C2—C3—C41.0 (4)C7—C12—C13—C14179.54 (19)
C2—C3—C4—C50.0 (3)C11—C12—C13—C140.5 (3)
C1—N1—C5—O1178.97 (18)C7—C12—C13—C181.3 (3)
C1—N1—C5—C40.6 (3)C11—C12—C13—C18179.68 (19)
C6—O1—C5—N1174.68 (17)C18—C13—C14—C151.1 (3)
C6—O1—C5—C45.7 (3)C12—C13—C14—C15178.1 (2)
C3—C4—C5—N10.9 (3)C13—C14—C15—C160.7 (4)
C3—C4—C5—O1178.70 (18)C14—C15—C16—C170.3 (4)
C5—O1—C6—C1991.9 (2)C15—C16—C17—C180.3 (4)
C5—O1—C6—C790.9 (2)C16—C17—C18—C130.7 (3)
C19—C6—C7—C8178.89 (19)C16—C17—C18—C19179.7 (2)
O1—C6—C7—C84.0 (3)C14—C13—C18—C171.1 (3)
C19—C6—C7—C120.2 (3)C12—C13—C18—C17178.16 (19)
O1—C6—C7—C12176.95 (16)C14—C13—C18—C19179.92 (19)
C12—C7—C8—C90.2 (3)C12—C13—C18—C190.8 (3)
C6—C7—C8—C9179.3 (2)O1—C6—C19—O23.9 (3)
C7—C8—C9—C100.3 (4)C7—C6—C19—O2179.02 (18)
C8—C9—C10—C110.0 (4)O1—C6—C19—C18177.34 (17)
C9—C10—C11—C120.7 (4)C7—C6—C19—C180.2 (3)
C8—C7—C12—C110.9 (3)C17—C18—C19—C6178.89 (19)
C6—C7—C12—C11179.97 (18)C13—C18—C19—C60.1 (3)
C8—C7—C12—C13178.16 (18)C17—C18—C19—O22.2 (3)
C6—C7—C12—C130.9 (3)C13—C18—C19—O2178.76 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6/C7/C12/C13/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.593.475 (3)159
C10—H10···Cg1ii0.932.863.691 (3)150
C15—H15···Cg2iii0.932.803.537 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H13NO2
Mr287.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9379 (6), 8.6433 (10), 18.389 (3)
β (°) 96.088 (8)
V3)1412.6 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2530, 2384, 1828
Rint0.036
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.158, 1.07
No. of reflections2384
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6/C7/C12/C13/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.593.475 (3)158.5
C10—H10···Cg1ii0.932.863.691 (3)150
C15—H15···Cg2iii0.932.803.537 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Management of The New College (Autonomous), Chennai, India, for providing the necessary facilities.

References

First citationAmr, A. G. E. & Abdulla, M. M. (2006). Bioorg. Med. Chem. 14, 4341–4352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBorgna, P., Pregnolato, M., Gamba, I. A. & Mellerio, G. (1993). J. Heterocycl. Chem. 30, 1079–1084.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany  Google Scholar
First citationKamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339–379.  CrossRef CAS Google Scholar
First citationLi, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed. 47, 2649–2652.  Web of Science CrossRef CAS Google Scholar
First citationMeudtner, R. M. & Hecht, S. (2008). Angew. Chem. Int. Ed. 47, 4926–4930.  Web of Science CrossRef CAS Google Scholar
First citationRichardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534–2537.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSchweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203–2205.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds