organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dimeth­­oxy-2,2′-[(cyclo­hexane-1,2-di­yl)bis­­(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: jehugu@yahoo.com.cn

(Received 22 July 2010; accepted 19 August 2010; online 28 August 2010)

The mol­ecule of the title compound, C22H26N2O4, has two azomethine linkages, both of which are in an E configuration. The cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the benzene rings is 66.57 (9)°. The mol­ecular structure is stabilized by two intra­molecular O—H⋯N hydrogen bonds.

Related literature

For related structures, see: Aslantaş et al. (2007[Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644-o645.]); Tozzo et al. (2008[Tozzo, E., Romera, S., Santos, M. P., Muraro, M., Santos, R. H. De A., Liao, L. M., Vizotto, L. & Dockal, E. R. (2008). J. Mol. Struct. 876, 110-120.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N2O4

  • Mr = 382.45

  • Monoclinic, P 21 /c

  • a = 15.014 (3) Å

  • b = 12.029 (2) Å

  • c = 12.099 (2) Å

  • β = 107.54 (3)°

  • V = 2083.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 19987 measured reflections

  • 4748 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.164

  • S = 1.03

  • 4748 reflections

  • 259 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.88 (2) 1.77 (2) 2.572 (3) 150 (3)
O4—H4⋯N2 0.86 (3) 1.80 (3) 2.587 (3) 152 (3)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We present the crystal structure of the title compound, as shown in Fig. 1. X-ray analysis suggests that the imino group is in the trans configuration and the two aromatic rings are lying on in front of the other. Bond lengths and angles within the aromatic rings are consistent with reported examples. Short H-bonds exists between the OH groups and the imino groups in ortho position.

Related literature top

For related structures, see: Aslantaş et al. (2007); Tozzo et al. (2008).

Experimental top

The title compound was prepared by a known method. o-Vanillin (2 mmol, 0.304 g) in acetontrile (20 ml) and trans-1,2-cyclohexanediamine (1 mmol, 0.114 g) in methanol (20 ml) were mixed and refluxed for about 4 h at 358 K. The reaction mixture was cooled and filtered; Compound was obtained by crystallization from a mixture methanol/acetonitrile solution after a few days. Analysis: calculated for C22H26N2O4: C 69.09, H 6.85, N 7.32, O 16.73%; found: C 69.21, H.7.01, N 23.78%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C). The H atoms attached to the O atoms were found from the Fourier difference map and the O–H bonds are refined in the normal range with Uiso(H) = 1.5Ueq(O).

Structure description top

We present the crystal structure of the title compound, as shown in Fig. 1. X-ray analysis suggests that the imino group is in the trans configuration and the two aromatic rings are lying on in front of the other. Bond lengths and angles within the aromatic rings are consistent with reported examples. Short H-bonds exists between the OH groups and the imino groups in ortho position.

For related structures, see: Aslantaş et al. (2007); Tozzo et al. (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
6,6'-Dimethoxy-2,2'-[(cyclohexane-1,2-diyl)bis(nitrilomethylidyne)]diphenol top
Crystal data top
C22H26N2O4F(000) = 816
Mr = 382.45Dx = 1.219 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4748 reflections
a = 15.014 (3) Åθ = 3.1–27.5°
b = 12.029 (2) ŵ = 0.08 mm1
c = 12.099 (2) ÅT = 293 K
β = 107.54 (3)°Block, yellow
V = 2083.5 (6) Å30.22 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2352 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 10.000 pixels mm-1h = 1919
ω scansk = 1515
19987 measured reflectionsl = 1514
4748 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.6508P]
where P = (Fo2 + 2Fc2)/3
4748 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C22H26N2O4V = 2083.5 (6) Å3
Mr = 382.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.014 (3) ŵ = 0.08 mm1
b = 12.029 (2) ÅT = 293 K
c = 12.099 (2) Å0.22 × 0.20 × 0.15 mm
β = 107.54 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2352 reflections with I > 2σ(I)
19987 measured reflectionsRint = 0.062
4748 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0721 restraint
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.13 e Å3
4748 reflectionsΔρmin = 0.18 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0604 (3)0.6458 (3)0.0711 (3)0.1152 (12)
H1A0.05940.65320.00830.173*
H1B0.10080.70150.11710.173*
H1C0.00160.65530.07650.173*
C20.0895 (3)0.5459 (3)0.4138 (4)0.1002 (11)
H2A0.07430.59340.46610.120*
C30.6339 (2)0.4074 (3)0.4551 (3)0.0913 (10)
H3A0.67710.43770.42230.110*
C40.2019 (2)0.1264 (2)0.3541 (3)0.0877 (9)
H4A0.21390.13700.43680.105*
H4B0.15730.18250.31400.105*
C50.1206 (2)0.4412 (3)0.4475 (3)0.0897 (9)
H5A0.12760.41820.52310.108*
C60.2916 (2)0.1400 (2)0.3237 (3)0.0832 (9)
H6A0.27880.13420.24040.100*
H6B0.31750.21320.34750.100*
C70.6257 (2)0.5092 (3)0.7826 (3)0.1011 (11)
H7A0.61370.52250.85500.152*
H7B0.61850.57740.73950.152*
H7C0.68830.48210.79710.152*
C80.5739 (2)0.3277 (3)0.3967 (2)0.0801 (9)
H8A0.57610.30420.32430.096*
C90.0802 (2)0.5821 (2)0.3029 (3)0.0869 (9)
H9A0.05990.65420.28130.104*
C100.36190 (19)0.0523 (2)0.3828 (2)0.0712 (8)
H10A0.41760.06050.35870.085*
H10B0.37960.06340.46600.085*
C110.16120 (19)0.0121 (2)0.3201 (3)0.0805 (9)
H11A0.10460.00400.34210.097*
H11B0.14490.00380.23660.097*
C120.10074 (19)0.5126 (2)0.2240 (3)0.0721 (8)
C130.14201 (18)0.3684 (2)0.3698 (2)0.0645 (7)
C140.6317 (2)0.4439 (2)0.5620 (2)0.0732 (8)
H14A0.67310.49870.60090.088*
C150.17636 (18)0.2574 (2)0.4061 (2)0.0658 (7)
H15A0.18690.23700.48310.079*
C160.23034 (17)0.0781 (2)0.3785 (2)0.0605 (7)
H16A0.24070.07460.46240.073*
C170.13111 (18)0.4042 (2)0.2567 (3)0.0677 (7)
C180.56880 (19)0.3998 (2)0.6112 (2)0.0605 (7)
C190.50689 (17)0.3178 (2)0.5532 (2)0.0546 (6)
C200.32359 (16)0.0644 (2)0.3545 (2)0.0565 (6)
H20A0.31490.07940.27230.068*
C210.50889 (17)0.2810 (2)0.44483 (19)0.0558 (6)
C220.44426 (17)0.1969 (2)0.3816 (2)0.0574 (6)
H22A0.44410.17870.30680.069*
N10.19248 (14)0.18712 (18)0.33625 (18)0.0628 (6)
N20.38790 (14)0.14722 (17)0.42452 (16)0.0568 (5)
O10.56134 (14)0.42882 (16)0.71764 (15)0.0826 (6)
O20.09388 (17)0.53935 (17)0.1121 (2)0.1010 (7)
O30.15024 (16)0.33730 (17)0.17764 (17)0.0920 (7)
H30.166 (3)0.2728 (19)0.211 (3)0.138*
O40.44555 (14)0.27515 (16)0.60379 (15)0.0754 (6)
H40.414 (2)0.225 (3)0.557 (3)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.121 (3)0.082 (2)0.148 (3)0.027 (2)0.048 (3)0.034 (2)
C20.113 (3)0.078 (2)0.125 (3)0.003 (2)0.058 (2)0.029 (2)
C30.093 (2)0.111 (3)0.081 (2)0.041 (2)0.0441 (18)0.012 (2)
C40.082 (2)0.0693 (19)0.112 (2)0.0142 (16)0.0286 (19)0.0015 (18)
C50.105 (3)0.081 (2)0.095 (2)0.0020 (19)0.049 (2)0.0140 (19)
C60.083 (2)0.0656 (18)0.098 (2)0.0009 (16)0.0235 (18)0.0063 (17)
C70.116 (3)0.106 (2)0.073 (2)0.028 (2)0.0178 (19)0.0256 (19)
C80.086 (2)0.099 (2)0.0646 (17)0.0261 (18)0.0367 (16)0.0097 (16)
C90.075 (2)0.0583 (18)0.130 (3)0.0048 (15)0.036 (2)0.011 (2)
C100.0629 (18)0.0709 (18)0.0779 (18)0.0088 (15)0.0182 (14)0.0011 (15)
C110.0510 (17)0.082 (2)0.105 (2)0.0047 (15)0.0185 (16)0.0027 (18)
C120.0568 (18)0.0676 (19)0.089 (2)0.0003 (14)0.0181 (15)0.0017 (17)
C130.0553 (16)0.0637 (17)0.0768 (18)0.0028 (13)0.0231 (14)0.0080 (15)
C140.071 (2)0.0743 (18)0.0709 (18)0.0194 (15)0.0154 (15)0.0041 (15)
C150.0591 (17)0.0781 (19)0.0619 (15)0.0067 (14)0.0207 (13)0.0010 (15)
C160.0526 (16)0.0638 (16)0.0643 (15)0.0046 (13)0.0163 (12)0.0075 (13)
C170.0513 (16)0.0673 (18)0.0813 (19)0.0062 (14)0.0150 (14)0.0084 (16)
C180.0653 (17)0.0625 (16)0.0514 (14)0.0017 (14)0.0142 (13)0.0037 (13)
C190.0539 (15)0.0601 (15)0.0508 (14)0.0007 (13)0.0175 (12)0.0066 (12)
C200.0523 (15)0.0650 (16)0.0519 (13)0.0002 (13)0.0151 (12)0.0026 (13)
C210.0546 (16)0.0651 (16)0.0475 (13)0.0021 (13)0.0151 (12)0.0028 (12)
C220.0566 (16)0.0722 (17)0.0446 (13)0.0030 (13)0.0170 (12)0.0015 (13)
N10.0553 (13)0.0680 (14)0.0620 (13)0.0058 (11)0.0129 (11)0.0021 (12)
N20.0513 (13)0.0666 (13)0.0527 (11)0.0026 (10)0.0157 (10)0.0019 (10)
O10.0954 (15)0.0916 (14)0.0620 (11)0.0214 (12)0.0258 (10)0.0159 (11)
O20.1142 (18)0.0841 (15)0.1000 (17)0.0303 (13)0.0250 (14)0.0171 (13)
O30.1182 (18)0.0836 (14)0.0708 (13)0.0356 (13)0.0233 (12)0.0012 (11)
O40.0820 (14)0.0921 (15)0.0601 (11)0.0245 (11)0.0335 (10)0.0087 (10)
Geometric parameters (Å, º) top
C1—O21.410 (3)C10—H10A0.9700
C1—H1A0.9600C10—H10B0.9700
C1—H1B0.9600C11—C161.521 (3)
C1—H1C0.9600C11—H11A0.9700
C2—C51.363 (4)C11—H11B0.9700
C2—C91.378 (4)C12—O21.365 (3)
C2—H2A0.9300C12—C171.399 (4)
C3—C81.358 (4)C13—C171.396 (4)
C3—C141.377 (4)C13—C151.452 (4)
C3—H3A0.9300C14—C181.367 (3)
C4—C61.509 (4)C14—H14A0.9300
C4—C111.510 (4)C15—N11.269 (3)
C4—H4A0.9700C15—H15A0.9300
C4—H4B0.9700C16—N11.459 (3)
C5—C131.392 (4)C16—C201.522 (3)
C5—H5A0.9300C16—H16A0.9800
C6—C101.511 (4)C17—O31.346 (3)
C6—H6A0.9700C18—O11.371 (3)
C6—H6B0.9700C18—C191.392 (3)
C7—O11.425 (3)C19—O41.351 (3)
C7—H7A0.9600C19—C211.393 (3)
C7—H7B0.9600C20—N21.466 (3)
C7—H7C0.9600C20—H20A0.9800
C8—C211.397 (3)C21—C221.450 (3)
C8—H8A0.9300C22—N21.268 (3)
C9—C121.371 (4)C22—H22A0.9300
C9—H9A0.9300O3—H30.876 (18)
C10—C201.516 (3)O4—H40.86 (3)
O2—C1—H1A109.5C4—C11—H11B109.4
O2—C1—H1B109.5C16—C11—H11B109.4
H1A—C1—H1B109.5H11A—C11—H11B108.0
O2—C1—H1C109.5O2—C12—C9125.5 (3)
H1A—C1—H1C109.5O2—C12—C17114.9 (3)
H1B—C1—H1C109.5C9—C12—C17119.6 (3)
C5—C2—C9120.6 (3)C5—C13—C17119.1 (3)
C5—C2—H2A119.7C5—C13—C15120.5 (3)
C9—C2—H2A119.7C17—C13—C15120.4 (2)
C8—C3—C14121.0 (3)C18—C14—C3120.0 (3)
C8—C3—H3A119.5C18—C14—H14A120.0
C14—C3—H3A119.5C3—C14—H14A120.0
C6—C4—C11110.5 (2)N1—C15—C13122.2 (3)
C6—C4—H4A109.6N1—C15—H15A118.9
C11—C4—H4A109.6C13—C15—H15A118.9
C6—C4—H4B109.6N1—C16—C11109.8 (2)
C11—C4—H4B109.6N1—C16—C20108.3 (2)
H4A—C4—H4B108.1C11—C16—C20111.9 (2)
C2—C5—C13120.5 (3)N1—C16—H16A108.9
C2—C5—H5A119.8C11—C16—H16A108.9
C13—C5—H5A119.8C20—C16—H16A108.9
C4—C6—C10110.9 (2)O3—C17—C13121.7 (2)
C4—C6—H6A109.5O3—C17—C12118.5 (3)
C10—C6—H6A109.5C13—C17—C12119.7 (3)
C4—C6—H6B109.5C14—C18—O1125.0 (2)
C10—C6—H6B109.5C14—C18—C19120.0 (2)
H6A—C6—H6B108.0O1—C18—C19115.0 (2)
O1—C7—H7A109.5O4—C19—C18118.9 (2)
O1—C7—H7B109.5O4—C19—C21121.1 (2)
H7A—C7—H7B109.5C18—C19—C21120.0 (2)
O1—C7—H7C109.5N2—C20—C10111.1 (2)
H7A—C7—H7C109.5N2—C20—C16107.46 (19)
H7B—C7—H7C109.5C10—C20—C16111.4 (2)
C3—C8—C21120.3 (3)N2—C20—H20A108.9
C3—C8—H8A119.9C10—C20—H20A108.9
C21—C8—H8A119.9C16—C20—H20A108.9
C12—C9—C2120.5 (3)C19—C21—C8118.7 (2)
C12—C9—H9A119.8C19—C21—C22121.2 (2)
C2—C9—H9A119.8C8—C21—C22120.1 (2)
C6—C10—C20112.1 (2)N2—C22—C21122.4 (2)
C6—C10—H10A109.2N2—C22—H22A118.8
C20—C10—H10A109.2C21—C22—H22A118.8
C6—C10—H10B109.2C15—N1—C16119.8 (2)
C20—C10—H10B109.2C22—N2—C20119.2 (2)
H10A—C10—H10B107.9C18—O1—C7117.2 (2)
C4—C11—C16111.1 (2)C12—O2—C1118.4 (3)
C4—C11—H11A109.4C17—O3—H3107 (2)
C16—C11—H11A109.4C19—O4—H4106 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.88 (2)1.77 (2)2.572 (3)150 (3)
O4—H4···N20.86 (3)1.80 (3)2.587 (3)152 (3)

Experimental details

Crystal data
Chemical formulaC22H26N2O4
Mr382.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.014 (3), 12.029 (2), 12.099 (2)
β (°) 107.54 (3)
V3)2083.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19987, 4748, 2352
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.164, 1.03
No. of reflections4748
No. of parameters259
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.876 (18)1.77 (2)2.572 (3)150 (3)
O4—H4···N20.86 (3)1.80 (3)2.587 (3)152 (3)
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

References

First citationAslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644–o645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTozzo, E., Romera, S., Santos, M. P., Muraro, M., Santos, R. H. De A., Liao, L. M., Vizotto, L. & Dockal, E. R. (2008). J. Mol. Struct. 876, 110–120.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds