organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­benzyl-1,1′-ethyl­enediimidazolium dibromide

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 5 August 2010; accepted 9 August 2010; online 18 August 2010)

In the title compound, C22H24N42+·2Br, the imidazolium dication is located on a crystallographic inversion center. The imidazole and benzene rings make a dihedral angle of 73.1 (9)°. In the crystal, non-classical inter­molecular C—H⋯Br hydrogen bonds link the ion pairs into a two-dimensional network.

Related literature

For related structures of bis­(imidazolium) salts, see: Baker et al. (2002[Baker, R. J., Cole, M. L., Jones, C. & Mahon, M. F. (2002). J. Chem. Soc. Dalton Trans. pp. 1992-1996.]); Lee et al. (2004[Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.], 2007[Lee, H. M., Chen, C.-Y., Chen, W.-L. & Lin, H.-C. (2007). Acta Cryst. E63, o315-o316.], 2008[Lee, H. M., Lu, C.-Y. & Cheng, P.-Y. (2008). Acta Cryst. E64, m1028.]); Jin et al. (2007[Jin, H.-S., Wang, H.-J., Zhang, Y., Zuo, Y.-J. & Zhong, C.-M. (2007). Acta Cryst. E63, o1880-o1881.]); Lee & Lu (2008[Lee, H. M. & Lu, C.-Y. (2008). Acta Cryst. E64, o2086.]); Paulose et al. (2008[Paulose, T. A. P., Olson, J. A., Quail, J. W. & Foley, S. R. (2008). J. Organomet. Chem, 693, 3405-3410.]) and of methyl­ene-linked bis­(imidazolium) salts, see: Cheng et al. (2006[Cheng, P.-Y., Chen, C.-Y. & Lee, H. M. (2006). Acta Cryst. E62, o5850-o5851.]); Lee & Chiu (2004[Lee, H. M. & Chiu, P. L. (2004). Acta Cryst. E60, o1385-o1386.]); Lee et al. (2004[Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N42+·2Br

  • Mr = 504.27

  • Monoclinic, P 21 /c

  • a = 16.4674 (8) Å

  • b = 5.2099 (2) Å

  • c = 12.3736 (6) Å

  • β = 96.495 (3)°

  • V = 1054.76 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.446, Tmax = 0.513

  • 10232 measured reflections

  • 2542 independent reflections

  • 1915 reflections with I > 2σ

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.074

  • S = 1.03

  • 2542 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 2.86 3.663 (2) 143
C3—H3⋯Br1ii 0.95 2.77 3.683 (2) 162
C4—H4B⋯Br1i 0.99 2.83 3.661 (3) 142
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The title compound is a precursor to the formation of bidentate N-heterocyclic carbene ligand (Lee et al. 2004). It can be easily prepared by the reaction of 1,2-dibromoethane and 1-benzylimidazole in tetrahydrofuran (Lee et al. 2004).

The dication is located on a crystallographic inversion center. The non-classical intermolecular hydrogen bonds of the type C—H···Br link the imidazolium dications and bromide anions into a two dimensional hydrogen bonded network.

Ethylene-linked bis(imidazolium) salts similar to the title compound were reported by us (Lee et al., 2004; Lee et al. 2007; Lee & Lu (2008); Lee et al. 2008) and others (Baker et al. 2002; Jin et al. 2007; Paulose et al. 2008). We also published crystal structures of relevant methylene-linked bis(imidazolium) salts (Lee et al., 2004; Lee & Chiu, 2004; Cheng et al. 2006).

Related literature top

For related structures of bis(imidazolium) salts, see: Baker et al. (2002); Lee et al. (2004, 2007, 2008); Jin et al. (2007); Lee & Lu (2008); Paulose et al. (2008) and of methylene-linked bis(imidazolium) salts, see: Cheng et al. (2006); Lee & Chiu (2004); Lee et al. (2004).

Experimental top

The compound was prepared according to the literature procedure (Lee et al., 2004). Suitable crystals were obtained by slow diffusion of diethyl ether into a DMF solution of the compound at room temperature.

Refinement top

All the hydrogen atoms were discerned in the difference Fourier map, nevertheless, all the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethylene —H = 0.99 Å while Uiso(H) = 1.2Ueq(C) for all the H atoms.

Structure description top

The title compound is a precursor to the formation of bidentate N-heterocyclic carbene ligand (Lee et al. 2004). It can be easily prepared by the reaction of 1,2-dibromoethane and 1-benzylimidazole in tetrahydrofuran (Lee et al. 2004).

The dication is located on a crystallographic inversion center. The non-classical intermolecular hydrogen bonds of the type C—H···Br link the imidazolium dications and bromide anions into a two dimensional hydrogen bonded network.

Ethylene-linked bis(imidazolium) salts similar to the title compound were reported by us (Lee et al., 2004; Lee et al. 2007; Lee & Lu (2008); Lee et al. 2008) and others (Baker et al. 2002; Jin et al. 2007; Paulose et al. 2008). We also published crystal structures of relevant methylene-linked bis(imidazolium) salts (Lee et al., 2004; Lee & Chiu, 2004; Cheng et al. 2006).

For related structures of bis(imidazolium) salts, see: Baker et al. (2002); Lee et al. (2004, 2007, 2008); Jin et al. (2007); Lee & Lu (2008); Paulose et al. (2008) and of methylene-linked bis(imidazolium) salts, see: Cheng et al. (2006); Lee & Chiu (2004); Lee et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are depicted by circles of an arbitrary radius. The unlabelled atoms of the imidazolium cation and the bromide anion are related to the labelled ones by 1 - x, -y, 1 - z.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. Hydrogen bonds are shown as dashed lines.
3,3'-Dibenzyl-1,1'-ethylenediimidazolium dibromide top
Crystal data top
C22H24N42+·2BrF(000) = 508
Mr = 504.27Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2242 reflections
a = 16.4674 (8) Åθ = 2.5–24.5°
b = 5.2099 (2) ŵ = 3.86 mm1
c = 12.3736 (6) ÅT = 150 K
β = 96.495 (3)°Block, colorless
V = 1054.76 (8) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2542 independent reflections
Radiation source: fine-focus sealed tube1915 reflections with I > 2σ
Graphite monochromatorRint = 0.047
ω scansθmax = 28.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2121
Tmin = 0.446, Tmax = 0.513k = 66
10232 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.006P]
where P = (Fo2 + 2Fc2)/3
2542 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C22H24N42+·2BrV = 1054.76 (8) Å3
Mr = 504.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.4674 (8) ŵ = 3.86 mm1
b = 5.2099 (2) ÅT = 150 K
c = 12.3736 (6) Å0.25 × 0.20 × 0.20 mm
β = 96.495 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
2542 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1915 reflections with I > 2σ
Tmin = 0.446, Tmax = 0.513Rint = 0.047
10232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
2542 reflectionsΔρmin = 0.46 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.326856 (16)0.58076 (5)0.570787 (19)0.02456 (10)
C10.34814 (15)0.0860 (5)0.37001 (19)0.0191 (5)
H10.31710.04150.40180.023*
C20.45155 (15)0.3145 (5)0.32355 (19)0.0186 (5)
H20.50560.37250.31760.022*
C30.38199 (15)0.4239 (5)0.27857 (19)0.0196 (5)
H30.37770.57370.23450.024*
C40.48543 (14)0.0683 (4)0.44729 (18)0.0173 (5)
H4A0.53270.11280.40820.021*
H4B0.45690.22900.46280.021*
C50.23178 (16)0.3432 (5)0.2752 (2)0.0300 (7)
H5A0.22270.35660.19490.036*
H5B0.21990.51310.30560.036*
C60.17344 (15)0.1494 (5)0.3122 (2)0.0230 (6)
C70.15780 (16)0.1430 (6)0.4197 (2)0.0324 (7)
H70.18420.26210.47010.039*
C80.10409 (18)0.0349 (6)0.4545 (3)0.0381 (8)
H80.09440.04020.52870.046*
C90.06422 (16)0.2064 (6)0.3799 (3)0.0380 (8)
H90.02710.32890.40310.046*
C100.07858 (17)0.1982 (6)0.2731 (3)0.0350 (7)
H100.05080.31340.22210.042*
C110.13354 (16)0.0224 (5)0.2392 (2)0.0281 (6)
H110.14390.01990.16520.034*
N10.42965 (12)0.1019 (4)0.37997 (15)0.0166 (4)
N20.31810 (11)0.2793 (4)0.30799 (15)0.0178 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03007 (16)0.02334 (15)0.02017 (15)0.00608 (12)0.00241 (10)0.00064 (12)
C10.0225 (13)0.0160 (13)0.0189 (12)0.0020 (10)0.0028 (10)0.0006 (11)
C20.0212 (14)0.0178 (12)0.0172 (12)0.0042 (10)0.0035 (10)0.0002 (10)
C30.0263 (14)0.0179 (13)0.0148 (12)0.0014 (11)0.0030 (10)0.0003 (11)
C40.0188 (12)0.0161 (12)0.0162 (12)0.0047 (10)0.0014 (9)0.0011 (10)
C50.0204 (14)0.0286 (15)0.0395 (17)0.0048 (11)0.0040 (12)0.0103 (12)
C60.0147 (13)0.0236 (14)0.0298 (15)0.0041 (10)0.0025 (11)0.0049 (11)
C70.0248 (16)0.0372 (17)0.0338 (17)0.0022 (11)0.0022 (13)0.0028 (13)
C80.0304 (17)0.053 (2)0.0318 (17)0.0014 (14)0.0078 (13)0.0109 (15)
C90.0200 (15)0.0320 (17)0.062 (2)0.0003 (12)0.0056 (14)0.0132 (16)
C100.0263 (16)0.0279 (16)0.050 (2)0.0014 (12)0.0011 (14)0.0091 (14)
C110.0241 (15)0.0290 (15)0.0310 (16)0.0058 (11)0.0023 (12)0.0036 (12)
N10.0205 (11)0.0154 (10)0.0135 (10)0.0004 (8)0.0012 (8)0.0004 (8)
N20.0193 (11)0.0155 (11)0.0179 (11)0.0009 (8)0.0008 (8)0.0020 (9)
Geometric parameters (Å, º) top
C1—N21.328 (3)C5—H5A0.9900
C1—N11.336 (3)C5—H5B0.9900
C1—H10.9500C6—C71.384 (4)
C2—C31.343 (3)C6—C111.384 (4)
C2—N11.379 (3)C7—C81.383 (4)
C2—H20.9500C7—H70.9500
C3—N21.376 (3)C8—C91.394 (4)
C3—H30.9500C8—H80.9500
C4—N11.467 (3)C9—C101.369 (4)
C4—C4i1.515 (4)C9—H90.9500
C4—H4A0.9900C10—C111.386 (4)
C4—H4B0.9900C10—H100.9500
C5—N21.472 (3)C11—H110.9500
C5—C61.501 (4)
N2—C1—N1108.1 (2)C11—C6—C5120.6 (3)
N2—C1—H1125.9C6—C7—C8120.7 (3)
N1—C1—H1125.9C6—C7—H7119.7
C3—C2—N1106.9 (2)C8—C7—H7119.7
C3—C2—H2126.5C7—C8—C9119.6 (3)
N1—C2—H2126.5C7—C8—H8120.2
C2—C3—N2107.5 (2)C9—C8—H8120.2
C2—C3—H3126.3C10—C9—C8119.9 (3)
N2—C3—H3126.3C10—C9—H9120.0
N1—C4—C4i108.8 (2)C8—C9—H9120.0
N1—C4—H4A109.9C9—C10—C11120.2 (3)
C4i—C4—H4A109.9C9—C10—H10119.9
N1—C4—H4B109.9C11—C10—H10119.9
C4i—C4—H4B109.9C6—C11—C10120.6 (3)
H4A—C4—H4B108.3C6—C11—H11119.7
N2—C5—C6113.3 (2)C10—C11—H11119.7
N2—C5—H5A108.9C1—N1—C2108.7 (2)
C6—C5—H5A108.9C1—N1—C4125.0 (2)
N2—C5—H5B108.9C2—N1—C4126.2 (2)
C6—C5—H5B108.9C1—N2—C3108.8 (2)
H5A—C5—H5B107.7C1—N2—C5128.0 (2)
C7—C6—C11119.1 (3)C3—N2—C5123.1 (2)
C7—C6—C5120.3 (2)
N1—C2—C3—N20.3 (3)N2—C1—N1—C4176.4 (2)
N2—C5—C6—C776.1 (3)C3—C2—N1—C10.7 (3)
N2—C5—C6—C11105.0 (3)C3—C2—N1—C4176.2 (2)
C11—C6—C7—C81.0 (4)C4i—C4—N1—C1100.5 (3)
C5—C6—C7—C8180.0 (3)C4i—C4—N1—C274.3 (3)
C6—C7—C8—C91.2 (4)N1—C1—N2—C30.7 (3)
C7—C8—C9—C100.2 (4)N1—C1—N2—C5179.3 (2)
C8—C9—C10—C111.0 (4)C2—C3—N2—C10.2 (3)
C7—C6—C11—C100.1 (4)C2—C3—N2—C5178.9 (2)
C5—C6—C11—C10178.8 (2)C6—C5—N2—C14.6 (4)
C9—C10—C11—C61.1 (4)C6—C5—N2—C3176.9 (2)
N2—C1—N1—C20.9 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1ii0.952.863.663 (2)143
C3—H3···Br1iii0.952.773.683 (2)162
C4—H4B···Br1ii0.992.833.661 (3)142
Symmetry codes: (ii) x, y1, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H24N42+·2Br
Mr504.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)16.4674 (8), 5.2099 (2), 12.3736 (6)
β (°) 96.495 (3)
V3)1054.76 (8)
Z2
Radiation typeMo Kα
µ (mm1)3.86
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.446, 0.513
No. of measured, independent and
observed (I > 2σ) reflections
10232, 2542, 1915
Rint0.047
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.03
No. of reflections2542
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.863.663 (2)142.6
C3—H3···Br1ii0.952.773.683 (2)162.0
C4—H4B···Br1i0.992.833.661 (3)142.2
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support of this work.

References

First citationBaker, R. J., Cole, M. L., Jones, C. & Mahon, M. F. (2002). J. Chem. Soc. Dalton Trans. pp. 1992–1996.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, P.-Y., Chen, C.-Y. & Lee, H. M. (2006). Acta Cryst. E62, o5850–o5851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, H.-S., Wang, H.-J., Zhang, Y., Zuo, Y.-J. & Zhong, C.-M. (2007). Acta Cryst. E63, o1880–o1881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. M., Chen, C.-Y., Chen, W.-L. & Lin, H.-C. (2007). Acta Cryst. E63, o315–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. M. & Chiu, P. L. (2004). Acta Cryst. E60, o1385–o1386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. M. & Lu, C.-Y. (2008). Acta Cryst. E64, o2086.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807–5825.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, H. M., Lu, C.-Y. & Cheng, P.-Y. (2008). Acta Cryst. E64, m1028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulose, T. A. P., Olson, J. A., Quail, J. W. & Foley, S. R. (2008). J. Organomet. Chem, 693, 3405–3410.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds