metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(ethyl­enedi­amine)­bis­­{2-[N-(2-hy­dr­oxy­eth­yl)oxamoyl­amino]­benzoato}nickel(II)

aCollege of Plant Science, Tarim University, Xinjiang 843300, People's Republic of China
*Correspondence e-mail: tdakxj@163.com

(Received 9 August 2010; accepted 16 August 2010; online 21 August 2010)

The title mononuclear NiII complex, [Ni(C11H11N2O5)2(C2H8N2)2], is built up by inversion symmetry associated with the central Ni atom. The ethyl­enediamine ligands are non-planar. The r.m.s. deviation from the mean plane of the five-membered Ni–ethyl­amine chelate ring plane is 0.1945 Å. In the crystal structure, complex mol­ecules are linked to each other via N—H⋯O and O—-H⋯O hydrogen bonding through translation symmetry along the b and c axes, resulting in an extended supra­molecular network.

Related literature

For background to oxamido compounds, see: Ruiz et al. (1999[Ruiz, R., Faus, J., Lloret, F., Julve, M. & Journaurx, Y. (1999). Coord. Chem. Rev. 193-195, 1069-1117.]); Ojima & Nonoyama (1988[Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-92.]). For related structures, see: Icbudak et al. (2003[Icbudak, H., Olmez, H., Yesilel, O. Z., Arslan, F., Naumov, P., Jovanovski, G., Ibrahim, A. R., Usman, A., Fun, H. K., Chantrapromma, S. & Ng, S. W. (2003). J. Mol. Struct. 657, 255-270.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H11N2O5)2(C2H8N2)2]

  • Mr = 681.35

  • Triclinic, [P \overline 1]

  • a = 8.266 (2) Å

  • b = 10.122 (3) Å

  • c = 10.260 (3) Å

  • α = 109.589 (3)°

  • β = 95.720 (3)°

  • γ = 103.788 (3)°

  • V = 770.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 298 K

  • 0.36 × 0.35 × 0.32 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.845, Tmax = 0.897

  • 4112 measured reflections

  • 2735 independent reflections

  • 2385 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.07

  • 2735 reflections

  • 206 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N3 2.0829 (18)
Ni1—N4 2.0847 (18)
Ni1—O1 2.1357 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.90 2.22 2.976 (2) 142
N4—H4B⋯O2ii 0.90 2.30 3.001 (3) 134
O5—H5A⋯O2iii 0.82 1.94 2.727 (3) 160
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z+1.

Data collection: SMART (Bruker, 1998[Bruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oxamido compounds and their complexes have been investigated extensively (Ruiz et al., 1999) by virtue of their bioactivities and the versatile bridging function (Ojima & Nonoyama, 1988). We selected 2-[N'-(ethanolamine)-oxamido]benzoate as a bridging ligand and ethylenediamine as another ligand to synthesize a new mononuclear nickel(II) compound, (I).

The title compound, (Fig. 1), is a mononuclear nickel(II) complex containing a total of 45 non-H atoms. The molecule is centrosymmetric with the central core Ni atom and the structure is similar to those seen previously in resemble compounds (Icbudak et al., 2003). The Ni1 atom is in a trans-octahedral coordination geometry. Here, O1 and O1ii [symmetry code: -x, -y + 1, -z + 1] are in axial positions [O1—Ni1—O1ii =180.0°] and the N atoms of the two ethylenediamine groups are in equatorial positions. The sum of the equatorial N—Ni—N angles is 360.0°, indicating a coplanarity for these atoms. The planar oxamide group (r.m.s. deviation 0.0056 Å) displays a transoid conformation and makes a dihedral angle of 4.2 (8)° with the benzene ring (r.m.s. deviation 0.0031 Å), whereas the ethanol plane is rotated out of the oxamide group by a dihedral angle of 73.4 (8)°.

In the crystal structure, the mononuclear molecules are linked by the N-H···O and O-H···O intermolecular hydrogen bonds into a two-dimensonal network extending parallel to the bc plane (Figure 2).

Related literature top

For background to oxamido compounds, see: Ruiz et al. (1999); Ojima & Nonoyama (1988). For related structures, see: Icbudak et al. (2003).

Experimental top

To a stirred solution of N-benzyl-N'-(ethanolamine)oxamide (2mmol, 0.496g) in methanol(20ml), sodium ethoxide (0.136 g, 2mmol) and Ni(ClO4)2.6H2O (0.366g, 1mmol) was added. 10 min later, ethylenediamine (0.056 g, 1mmol) was added. The mixture was then stirred and heated at 323K for 6 h, then filtered. By slow evaporation of the filtrate, green crystals suitable for X-ray investigation were obtained after three weeks. Yield, 56%, analysis, calculated for C26H38N8O10Ni: C 45.83, H, 5.62; N 16.45%; found: C 45.81, H 5.68, N, 16.49%.

Refinement top

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2), 0.86 (NH), 0.90 (NH2) and 0.82 (OH)Å] and constrained to ride on their parent atoms with Uiso(H) =1.2(1.5 for hydroxy O) Ueq(C/N).

Structure description top

Oxamido compounds and their complexes have been investigated extensively (Ruiz et al., 1999) by virtue of their bioactivities and the versatile bridging function (Ojima & Nonoyama, 1988). We selected 2-[N'-(ethanolamine)-oxamido]benzoate as a bridging ligand and ethylenediamine as another ligand to synthesize a new mononuclear nickel(II) compound, (I).

The title compound, (Fig. 1), is a mononuclear nickel(II) complex containing a total of 45 non-H atoms. The molecule is centrosymmetric with the central core Ni atom and the structure is similar to those seen previously in resemble compounds (Icbudak et al., 2003). The Ni1 atom is in a trans-octahedral coordination geometry. Here, O1 and O1ii [symmetry code: -x, -y + 1, -z + 1] are in axial positions [O1—Ni1—O1ii =180.0°] and the N atoms of the two ethylenediamine groups are in equatorial positions. The sum of the equatorial N—Ni—N angles is 360.0°, indicating a coplanarity for these atoms. The planar oxamide group (r.m.s. deviation 0.0056 Å) displays a transoid conformation and makes a dihedral angle of 4.2 (8)° with the benzene ring (r.m.s. deviation 0.0031 Å), whereas the ethanol plane is rotated out of the oxamide group by a dihedral angle of 73.4 (8)°.

In the crystal structure, the mononuclear molecules are linked by the N-H···O and O-H···O intermolecular hydrogen bonds into a two-dimensonal network extending parallel to the bc plane (Figure 2).

For background to oxamido compounds, see: Ruiz et al. (1999); Ojima & Nonoyama (1988). For related structures, see: Icbudak et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% displacement ellipsoids. Inversion related atoms, labelled A, complete the metal complex with [Symmetry code ii = -x, -y + 1, -z + 1].
[Figure 2] Fig. 2. Packing diagram of (I). The hydrogen bonds are shown by the dashed lines.
trans-Bis(ethylenediamine)bis{2-[N-(2- hydroxyethyl)oxamoylamino]benzoato}nickel(II) top
Crystal data top
[Ni(C11H11N2O5)2(C2H8N2)2]Z = 1
Mr = 681.35F(000) = 358
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.266 (2) ÅCell parameters from 2252 reflections
b = 10.122 (3) Åθ = 2.6–27.0°
c = 10.260 (3) ŵ = 0.70 mm1
α = 109.589 (3)°T = 298 K
β = 95.720 (3)°Block, green
γ = 103.788 (3)°0.36 × 0.35 × 0.32 mm
V = 770.1 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
2735 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 95
Tmin = 0.845, Tmax = 0.897k = 1212
4112 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.172P]
where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ni(C11H11N2O5)2(C2H8N2)2]γ = 103.788 (3)°
Mr = 681.35V = 770.1 (4) Å3
Triclinic, P1Z = 1
a = 8.266 (2) ÅMo Kα radiation
b = 10.122 (3) ŵ = 0.70 mm1
c = 10.260 (3) ÅT = 298 K
α = 109.589 (3)°0.36 × 0.35 × 0.32 mm
β = 95.720 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2735 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2385 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.897Rint = 0.016
4112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2735 reflectionsΔρmin = 0.40 e Å3
206 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.03350 (13)
O10.12334 (19)0.66239 (15)0.42423 (15)0.0405 (4)
O20.1944 (3)0.52116 (18)0.2362 (2)0.0746 (6)
O30.2826 (2)1.19597 (16)0.59663 (16)0.0515 (4)
O40.0627 (2)0.92690 (17)0.70836 (18)0.0548 (4)
O50.3278 (2)1.3059 (2)1.0935 (2)0.0739 (6)
H5A0.30301.38241.12740.111*
N10.2153 (2)0.94573 (18)0.49224 (17)0.0349 (4)
H10.15990.86780.50300.042*
N20.1282 (2)1.1741 (2)0.80736 (19)0.0435 (4)
H20.17381.25410.79580.052*
C10.1939 (3)0.6434 (2)0.3180 (2)0.0411 (5)
C20.2816 (2)0.7770 (2)0.2880 (2)0.0353 (5)
C30.3576 (3)0.7547 (3)0.1703 (2)0.0451 (5)
H30.35290.65970.11410.054*
C40.4394 (3)0.8697 (3)0.1350 (3)0.0493 (6)
H40.49000.85250.05630.059*
C50.4454 (3)1.0099 (3)0.2174 (3)0.0501 (6)
H50.49961.08780.19350.060*
C60.3726 (3)1.0370 (3)0.3347 (2)0.0442 (5)
H60.37801.13280.38930.053*
C70.2905 (2)0.9221 (2)0.3726 (2)0.0335 (4)
C80.2178 (3)1.0721 (2)0.5916 (2)0.0358 (5)
C90.1276 (3)1.0487 (2)0.7090 (2)0.0376 (5)
C100.0570 (3)1.1848 (3)0.9330 (2)0.0462 (6)
H10A0.04331.10210.91020.055*
H10B0.02211.27360.96370.055*
C110.1807 (3)1.1869 (3)1.0509 (2)0.0515 (6)
H11A0.12601.19081.13080.062*
H11B0.21251.09661.02100.062*
N30.2112 (2)0.42116 (19)0.49185 (19)0.0400 (4)
H3A0.18410.33130.49600.048*
H3B0.24710.41480.41060.048*
N40.1301 (2)0.63455 (19)0.70438 (19)0.0418 (4)
H4A0.17430.72670.70920.050*
H4B0.05900.63600.76550.050*
C120.3456 (3)0.5236 (3)0.6128 (3)0.0516 (6)
H12A0.40370.60700.59160.062*
H12B0.42810.47520.63210.062*
C130.2663 (3)0.5744 (3)0.7395 (3)0.0518 (6)
H13A0.22020.49280.76750.062*
H13B0.35190.64900.81780.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0382 (2)0.0268 (2)0.0349 (2)0.01044 (15)0.00982 (16)0.00921 (16)
O10.0542 (9)0.0298 (8)0.0397 (8)0.0123 (6)0.0217 (7)0.0119 (6)
O20.1148 (16)0.0354 (10)0.0756 (13)0.0220 (10)0.0614 (12)0.0111 (9)
O30.0751 (12)0.0310 (9)0.0451 (9)0.0113 (8)0.0114 (8)0.0131 (7)
O40.0739 (11)0.0374 (9)0.0573 (11)0.0163 (8)0.0340 (9)0.0165 (8)
O50.0482 (10)0.0763 (14)0.0662 (13)0.0182 (10)0.0008 (9)0.0093 (11)
N10.0416 (10)0.0286 (9)0.0358 (9)0.0091 (7)0.0120 (8)0.0132 (8)
N20.0546 (11)0.0363 (10)0.0374 (10)0.0167 (8)0.0110 (8)0.0079 (8)
C10.0479 (13)0.0354 (12)0.0418 (13)0.0143 (10)0.0166 (10)0.0129 (10)
C20.0339 (11)0.0402 (12)0.0334 (11)0.0119 (9)0.0093 (9)0.0143 (9)
C30.0471 (13)0.0517 (14)0.0393 (12)0.0180 (11)0.0163 (10)0.0157 (11)
C40.0446 (13)0.0674 (17)0.0418 (13)0.0146 (11)0.0195 (10)0.0257 (12)
C50.0462 (13)0.0561 (15)0.0523 (15)0.0053 (11)0.0146 (11)0.0305 (13)
C60.0473 (13)0.0410 (13)0.0451 (13)0.0092 (10)0.0116 (10)0.0187 (11)
C70.0295 (10)0.0390 (11)0.0328 (11)0.0092 (8)0.0046 (8)0.0151 (9)
C80.0414 (11)0.0291 (11)0.0349 (11)0.0116 (9)0.0007 (9)0.0105 (9)
C90.0404 (12)0.0361 (12)0.0365 (12)0.0158 (9)0.0064 (9)0.0108 (10)
C100.0445 (13)0.0459 (13)0.0408 (13)0.0175 (10)0.0102 (10)0.0035 (10)
C110.0575 (15)0.0591 (16)0.0387 (13)0.0267 (12)0.0135 (11)0.0113 (11)
N30.0437 (10)0.0362 (10)0.0447 (11)0.0155 (8)0.0149 (8)0.0163 (8)
N40.0481 (11)0.0346 (10)0.0401 (10)0.0108 (8)0.0100 (8)0.0111 (8)
C120.0397 (12)0.0485 (14)0.0643 (16)0.0127 (11)0.0071 (11)0.0191 (12)
C130.0501 (14)0.0504 (14)0.0467 (14)0.0111 (11)0.0024 (11)0.0137 (12)
Geometric parameters (Å, º) top
Ni1—N3i2.0829 (18)C4—C51.373 (4)
Ni1—N32.0829 (18)C4—H40.9300
Ni1—N4i2.0847 (18)C5—C61.374 (3)
Ni1—N42.0847 (18)C5—H50.9300
Ni1—O12.1357 (14)C6—C71.394 (3)
Ni1—O1i2.1357 (14)C6—H60.9300
O1—C11.267 (3)C8—C91.533 (3)
O2—C11.242 (3)C10—C111.495 (3)
O3—C81.222 (2)C10—H10A0.9700
O4—C91.219 (3)C10—H10B0.9700
O5—C111.401 (3)C11—H11A0.9700
O5—H5A0.8200C11—H11B0.9700
N1—C81.336 (3)N3—C121.471 (3)
N1—C71.406 (3)N3—H3A0.9000
N1—H10.8600N3—H3B0.9000
N2—C91.329 (3)N4—C131.470 (3)
N2—C101.452 (3)N4—H4A0.9000
N2—H20.8600N4—H4B0.9000
C1—C21.518 (3)C12—C131.505 (3)
C2—C31.392 (3)C12—H12A0.9700
C2—C71.413 (3)C12—H12B0.9700
C3—C41.379 (3)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
N3i—Ni1—N3180.000 (1)N1—C7—C2118.73 (17)
N3i—Ni1—N4i83.44 (7)O3—C8—N1127.5 (2)
N3—Ni1—N4i96.56 (7)O3—C8—C9120.27 (19)
N3i—Ni1—N496.56 (7)N1—C8—C9112.28 (17)
N3—Ni1—N483.44 (7)O4—C9—N2125.4 (2)
N4i—Ni1—N4180.000 (1)O4—C9—C8122.18 (19)
N3i—Ni1—O190.32 (6)N2—C9—C8112.47 (19)
N3—Ni1—O189.68 (6)N2—C10—C11112.25 (19)
N4i—Ni1—O190.28 (7)N2—C10—H10A109.2
N4—Ni1—O189.72 (7)C11—C10—H10A109.2
N3i—Ni1—O1i89.68 (6)N2—C10—H10B109.2
N3—Ni1—O1i90.32 (6)C11—C10—H10B109.2
N4i—Ni1—O1i89.72 (7)H10A—C10—H10B107.9
N4—Ni1—O1i90.28 (7)O5—C11—C10112.9 (2)
O1—Ni1—O1i180.000 (1)O5—C11—H11A109.0
C1—O1—Ni1127.60 (13)C10—C11—H11A109.0
C11—O5—H5A109.5O5—C11—H11B109.0
C8—N1—C7129.14 (17)C10—C11—H11B109.0
C8—N1—H1115.4H11A—C11—H11B107.8
C7—N1—H1115.4C12—N3—Ni1107.92 (14)
C9—N2—C10124.2 (2)C12—N3—H3A110.1
C9—N2—H2117.9Ni1—N3—H3A110.1
C10—N2—H2117.9C12—N3—H3B110.1
O2—C1—O1123.6 (2)Ni1—N3—H3B110.1
O2—C1—C2118.0 (2)H3A—N3—H3B108.4
O1—C1—C2118.39 (19)C13—N4—Ni1107.42 (14)
C3—C2—C7118.33 (19)C13—N4—H4A110.2
C3—C2—C1117.89 (19)Ni1—N4—H4A110.2
C7—C2—C1123.78 (19)C13—N4—H4B110.2
C4—C3—C2121.8 (2)Ni1—N4—H4B110.2
C4—C3—H3119.1H4A—N4—H4B108.5
C2—C3—H3119.1N3—C12—C13108.87 (18)
C5—C4—C3119.2 (2)N3—C12—H12A109.9
C5—C4—H4120.4C13—C12—H12A109.9
C3—C4—H4120.4N3—C12—H12B109.9
C4—C5—C6121.0 (2)C13—C12—H12B109.9
C4—C5—H5119.5H12A—C12—H12B108.3
C6—C5—H5119.5N4—C13—C12109.39 (19)
C5—C6—C7120.5 (2)N4—C13—H13A109.8
C5—C6—H6119.8C12—C13—H13A109.8
C7—C6—H6119.8N4—C13—H13B109.8
C6—C7—N1122.06 (19)C12—C13—H13B109.8
C6—C7—C2119.2 (2)H13A—C13—H13B108.2
N3i—Ni1—O1—C1129.94 (18)C7—N1—C8—O32.7 (4)
N3—Ni1—O1—C150.06 (18)C7—N1—C8—C9176.75 (18)
N4i—Ni1—O1—C146.50 (18)C10—N2—C9—O42.7 (4)
N4—Ni1—O1—C1133.50 (18)C10—N2—C9—C8177.83 (18)
O1i—Ni1—O1—C146 (100)O3—C8—C9—O4179.3 (2)
Ni1—O1—C1—O23.4 (3)N1—C8—C9—O40.1 (3)
Ni1—O1—C1—C2177.07 (13)O3—C8—C9—N21.2 (3)
O2—C1—C2—C30.0 (3)N1—C8—C9—N2179.35 (18)
O1—C1—C2—C3179.48 (19)C9—N2—C10—C1186.0 (3)
O2—C1—C2—C7179.9 (2)N2—C10—C11—O560.6 (3)
O1—C1—C2—C70.5 (3)N3i—Ni1—N3—C1297 (100)
C7—C2—C3—C40.2 (3)N4i—Ni1—N3—C12166.19 (14)
C1—C2—C3—C4179.78 (19)N4—Ni1—N3—C1213.81 (14)
C2—C3—C4—C50.4 (4)O1—Ni1—N3—C1275.94 (14)
C3—C4—C5—C60.6 (4)O1i—Ni1—N3—C12104.06 (14)
C4—C5—C6—C70.1 (4)N3i—Ni1—N4—C13165.48 (14)
C5—C6—C7—N1179.67 (19)N3—Ni1—N4—C1314.52 (14)
C5—C6—C7—C20.6 (3)N4i—Ni1—N4—C133 (100)
C8—N1—C7—C65.3 (3)O1—Ni1—N4—C13104.23 (15)
C8—N1—C7—C2174.97 (19)O1i—Ni1—N4—C1375.77 (15)
C3—C2—C7—C60.8 (3)Ni1—N3—C12—C1339.4 (2)
C1—C2—C7—C6179.26 (19)Ni1—N4—C13—C1240.2 (2)
C3—C2—C7—N1179.53 (18)N3—C12—C13—N454.1 (2)
C1—C2—C7—N10.5 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3ii0.902.222.976 (2)142
N4—H4B···O2i0.902.303.001 (3)134
O5—H5A···O2iii0.821.942.727 (3)160
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C11H11N2O5)2(C2H8N2)2]
Mr681.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.266 (2), 10.122 (3), 10.260 (3)
α, β, γ (°)109.589 (3), 95.720 (3), 103.788 (3)
V3)770.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.36 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.845, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
4112, 2735, 2385
Rint0.016
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.07
No. of reflections2735
No. of parameters206
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—N32.0829 (18)Ni1—O12.1357 (14)
Ni1—N42.0847 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.902.222.976 (2)141.7
N4—H4B···O2ii0.902.303.001 (3)134.2
O5—H5A···O2iii0.821.942.727 (3)159.9
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The author acknowledges the financial support of the Science Foundation of Xinjiang.

References

First citationBruker, (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIcbudak, H., Olmez, H., Yesilel, O. Z., Arslan, F., Naumov, P., Jovanovski, G., Ibrahim, A. R., Usman, A., Fun, H. K., Chantrapromma, S. & Ng, S. W. (2003). J. Mol. Struct. 657, 255–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationOjima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85–92.  CrossRef CAS Web of Science Google Scholar
First citationRuiz, R., Faus, J., Lloret, F., Julve, M. & Journaurx, Y. (1999). Coord. Chem. Rev. 193–195, 1069–1117.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds