organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dieth­yl(hy­dr­oxy)ammonium 3-carb­­oxy­benzoate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bAnalytical Center, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: cchhyy@sina.cn

(Received 18 July 2010; accepted 2 August 2010; online 18 August 2010)

In the title molecular compound, C4H12NO+·C8H5O4, the N,N-dieth­yl(hy­droxy)ammonium cation (DTHA) is linked to the 3-carb­oxy­benzoate anion (HBDL) by O—H⋯O and N—H⋯O hydrogen bonds with a graph-set motif R22(7). In the crystal, helical chains are formed by O—H⋯O hydrogen bonds, propagating along [010]. The crystal structure is further stabilized by ππ inter­actions between inversion-related HBDL benzene rings [centroid–centroid distance = 3.900 (4) Å] and C—H⋯O inter­actions.

Related literature

For supra­molecular structures comprising benzene-dicarb­oxy­lic acids, see: Karpova et al. (2004[Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491-o2492.]); Bourne et al. (2001[Bourne, S. A., Mondal, A. & Zaworotko, M. J. (2001). Cryst. Eng. 4, 25-36.]); Jin et al. (2005[Jin, Z.-M., Feng, H., Tu, B., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. C61, o593-o595.]); Dale et al. (2004[Dale, S. H., Elsgood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207-214.]); Shan et al. (2002[Shan, N., Bond, A. D. & Jones, W. (2002). Cryst. Eng. 5, 9-24.]); Yuge et al. (2006[Yuge, T., Miyata, M. & Tohnai, N. (2006). Cryst. Growth Des. 6, 1272-1273.]); Zhao et al. (2007[Zhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. & Zhang, W.-P. (2007). Acta Cryst. E63, o2728.]). For graph-set analysis, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12NO+·C8H5O4

  • Mr = 255.27

  • Monoclinic, P 21 /c

  • a = 9.535 (7) Å

  • b = 11.937 (9) Å

  • c = 11.660 (9) Å

  • β = 96.959 (15)°

  • V = 1317.4 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.34 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.977

  • 6749 measured reflections

  • 2317 independent reflections

  • 1912 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.203

  • S = 1.19

  • 2317 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.91 1.85 2.702 (4) 155
O5—H5⋯O2 0.82 1.74 2.545 (4) 169
O4—H4⋯O1i 0.82 1.79 2.606 (4) 175
C10—H10A⋯O2ii 0.97 2.58 3.373 (5) 139
C12—H12A⋯O5iii 0.97 2.51 3.426 (5) 157
C12—H12B⋯O3iv 0.97 2.53 3.117 (5) 119
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Various supramolecular structures comprising benzene-dicarboxylic acids have been reported (Bourne et al., 2001; Shan et al., 2002; Karpova et al., 2004; Dale et al., 2004; Jin et al., 2005; Yuge et al., 2006; Zhao et al., 2007). Continuing our research on such compounds, the title compound was synthesized and its crystal structure is described herein.

As shown in Fig. 1, the N,N-diethylhydroxylammonium cation (DTHA) is linked to the 3-carboxybenzoate anion (HBDL) by N1—H1···O1 and O5—H5···O2 hydrogen bonds (Table 1), which can be described in graph-set terminology as R22(7) (Bernstein et al., 1995). In the HBDL anion the COO- group is only slightly inclined to the phenyl ring, by 4.4 (4)/%. In contrast the dihedral angle between the phenyl ring and the COOH group is 11.8 (4)/%.

In the crystal molecules are linked by O4—H4···O1i (symmetry code: (i) 1-x, -1-y, -z) hydrogen bonds to form helical chains propagating in [010] (Table 1, Fig. 2). The hydrogen bond pattern can be described in graph-set terminology as C11(8)R22(7). The molecules are further associated by ππ interactions, involving the HBDL benzene rings related by an inversion center, with a centroid-to-centroid distance of 3.900 (4) Å. The structure is further stabilized by C-H···O contacts (Table 1).

Related literature top

For supramolecular structures comprising benzene-dicarboxylic acids, see: Karpova et al. (2004); Bourne et al. (2001); Jin et al. (2005); Dale et al. (2004); Shan et al. (2002); Yuge et al. (2006); Zhao et al. (2007). For graph-set analysis, see: Etter (1990); Bernstein et al. (1995).

Experimental top

N,N-diethylhydroxylammine and benzene-1,3-dicarboxylic acid, in a molar ratio of 1:1, were mixed and dissolved in sufficient ethanol by heating to 373 K, at which point a clear solution resulted. The reaction mixture was then cooled slowly to room temperature. Crystals of the title compound were formed, collected and washed with ethanol.

Refinement top

All the H-atoms were included in calculate positions and treated as riding atoms: O-H = 0.82 Å, N-H = 0.91 Å, and C-H = 0.93, 0.96 and 0.97 Å, for CH(aromatic), CH(methyl) and CH(methylene), respectively. Uiso(H) = k × Ueq of the parent atom, where k = 1.5 for OH and methyl H-atoms and k = 1.2 for all other H-atoms.

Structure description top

Various supramolecular structures comprising benzene-dicarboxylic acids have been reported (Bourne et al., 2001; Shan et al., 2002; Karpova et al., 2004; Dale et al., 2004; Jin et al., 2005; Yuge et al., 2006; Zhao et al., 2007). Continuing our research on such compounds, the title compound was synthesized and its crystal structure is described herein.

As shown in Fig. 1, the N,N-diethylhydroxylammonium cation (DTHA) is linked to the 3-carboxybenzoate anion (HBDL) by N1—H1···O1 and O5—H5···O2 hydrogen bonds (Table 1), which can be described in graph-set terminology as R22(7) (Bernstein et al., 1995). In the HBDL anion the COO- group is only slightly inclined to the phenyl ring, by 4.4 (4)/%. In contrast the dihedral angle between the phenyl ring and the COOH group is 11.8 (4)/%.

In the crystal molecules are linked by O4—H4···O1i (symmetry code: (i) 1-x, -1-y, -z) hydrogen bonds to form helical chains propagating in [010] (Table 1, Fig. 2). The hydrogen bond pattern can be described in graph-set terminology as C11(8)R22(7). The molecules are further associated by ππ interactions, involving the HBDL benzene rings related by an inversion center, with a centroid-to-centroid distance of 3.900 (4) Å. The structure is further stabilized by C-H···O contacts (Table 1).

For supramolecular structures comprising benzene-dicarboxylic acids, see: Karpova et al. (2004); Bourne et al. (2001); Jin et al. (2005); Dale et al. (2004); Shan et al. (2002); Yuge et al. (2006); Zhao et al. (2007). For graph-set analysis, see: Etter (1990); Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, and atom-numbering scheme, of the title compound. The displacement ellipsoids have been drawn at the 50% probability level. One DTHA cation and one HBDL anion are linked via O—H···O and N—H···O hydrogen bonds (dashed lines); see Table 1 for details.
[Figure 2] Fig. 2. A view along the c-axis of the crystal packing of the title compound. The intermolecular O-H···O amd N-H···O hydrogen bonds are shown by dashed lines [symmetry operation: (') = 1-x, -1-y, -z].
Diethyl(hydroxy)ammonium 3-carboxybenzoate top
Crystal data top
C4H12NO+·C8H5O4F(000) = 544
Mr = 255.27Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3574 reflections
a = 9.535 (7) Åθ = 2.1–25.0°
b = 11.937 (9) ŵ = 0.10 mm1
c = 11.660 (9) ÅT = 273 K
β = 96.959 (15)°Block, colorless
V = 1317.4 (17) Å30.34 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2317 independent reflections
Radiation source: fine-focus sealed tube1912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.967, Tmax = 0.977k = 1413
6749 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0962P)2 + 0.4181P]
where P = (Fo2 + 2Fc2)/3
2317 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C4H12NO+·C8H5O4V = 1317.4 (17) Å3
Mr = 255.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.535 (7) ŵ = 0.10 mm1
b = 11.937 (9) ÅT = 273 K
c = 11.660 (9) Å0.34 × 0.15 × 0.14 mm
β = 96.959 (15)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1912 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.029
6749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.19Δρmax = 0.20 e Å3
2317 reflectionsΔρmin = 0.26 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.8613 (3)0.64114 (19)0.0032 (2)0.0693 (8)
O30.4161 (3)0.39290 (18)0.2751 (2)0.0755 (9)
O40.4378 (2)0.22073 (16)0.2114 (2)0.0594 (7)
H40.38650.20640.26110.089*
C10.7731 (3)0.6172 (2)0.0625 (3)0.0418 (7)
C20.7101 (3)0.5018 (2)0.0565 (2)0.0358 (7)
C30.6177 (3)0.4682 (2)0.1322 (2)0.0363 (7)
H30.59280.51810.18760.044*
C40.5616 (3)0.3611 (2)0.1267 (2)0.0364 (7)
C50.5951 (3)0.2889 (2)0.0422 (3)0.0481 (8)
H5A0.55680.21720.03730.058*
C60.6849 (4)0.3223 (3)0.0350 (3)0.0555 (9)
H60.70610.27340.09260.067*
C70.7434 (3)0.4276 (2)0.0276 (3)0.0483 (8)
H70.80560.44920.07910.058*
C80.4642 (3)0.3282 (2)0.2117 (3)0.0429 (7)
O10.7347 (2)0.68498 (17)0.13536 (19)0.0534 (6)
O50.9635 (3)0.83592 (18)0.0383 (2)0.0613 (7)
H50.93400.77400.01660.092*
N10.8850 (3)0.8758 (2)0.1251 (2)0.0504 (7)
H10.81500.82580.13350.060*
C91.0396 (4)0.7722 (4)0.2759 (4)0.0870 (13)
H9A0.96480.72240.29050.130*
H9B1.10320.78210.34560.130*
H9C1.09000.74100.21700.130*
C100.9787 (4)0.8832 (3)0.2364 (3)0.0697 (11)
H10A0.92510.91300.29510.084*
H10B1.05510.93490.22770.084*
C110.7195 (5)0.9731 (4)0.0227 (4)0.0870 (13)
H11A0.76960.94430.08300.131*
H11B0.68061.04520.04500.131*
H11C0.64460.92260.01010.131*
C120.8190 (4)0.9843 (3)0.0861 (3)0.0635 (10)
H12A0.89271.03740.07350.076*
H12B0.76801.01410.14650.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0955 (18)0.0479 (14)0.0763 (17)0.0257 (12)0.0577 (15)0.0171 (12)
O30.106 (2)0.0381 (13)0.097 (2)0.0105 (12)0.0701 (17)0.0130 (12)
O40.0767 (17)0.0336 (12)0.0770 (18)0.0074 (10)0.0459 (13)0.0033 (10)
C10.0488 (17)0.0335 (16)0.0462 (17)0.0001 (13)0.0186 (14)0.0018 (13)
C20.0364 (14)0.0309 (15)0.0406 (16)0.0006 (11)0.0072 (12)0.0016 (12)
C30.0409 (15)0.0283 (15)0.0414 (16)0.0034 (11)0.0123 (12)0.0022 (12)
C40.0360 (14)0.0310 (15)0.0432 (16)0.0028 (11)0.0085 (12)0.0016 (12)
C50.0527 (18)0.0322 (16)0.063 (2)0.0059 (13)0.0199 (15)0.0078 (14)
C60.072 (2)0.0399 (18)0.061 (2)0.0105 (15)0.0341 (17)0.0197 (15)
C70.0584 (19)0.0402 (17)0.0521 (19)0.0041 (14)0.0293 (15)0.0060 (14)
C80.0490 (17)0.0308 (16)0.0515 (18)0.0005 (13)0.0168 (14)0.0026 (13)
O10.0594 (13)0.0350 (12)0.0728 (15)0.0094 (10)0.0364 (12)0.0134 (10)
O50.0832 (17)0.0478 (14)0.0618 (15)0.0209 (12)0.0448 (13)0.0137 (11)
N10.0623 (17)0.0404 (15)0.0540 (16)0.0215 (12)0.0296 (13)0.0096 (12)
C90.077 (3)0.115 (4)0.069 (3)0.006 (3)0.011 (2)0.003 (3)
C100.077 (3)0.079 (3)0.055 (2)0.024 (2)0.0163 (19)0.0136 (19)
C110.099 (3)0.068 (3)0.093 (3)0.009 (2)0.007 (3)0.007 (2)
C120.083 (2)0.0390 (19)0.075 (2)0.0208 (17)0.035 (2)0.0081 (16)
Geometric parameters (Å, º) top
O2—C11.238 (3)O5—N11.412 (3)
O3—C81.198 (3)O5—H50.8200
O4—C81.307 (4)N1—C101.486 (5)
O4—H40.8200N1—C121.487 (5)
C1—O11.259 (3)N1—H10.9100
C1—C21.502 (4)C9—C101.496 (6)
C2—C31.380 (4)C9—H9A0.9600
C2—C71.386 (4)C9—H9B0.9600
C3—C41.384 (4)C9—H9C0.9600
C3—H30.9300C10—H10A0.9700
C4—C51.375 (4)C10—H10B0.9700
C4—C81.491 (4)C11—C121.495 (6)
C5—C61.374 (4)C11—H11A0.9600
C5—H5A0.9300C11—H11B0.9600
C6—C71.374 (4)C11—H11C0.9600
C6—H60.9300C12—H12A0.9700
C7—H70.9300C12—H12B0.9700
C8—O4—H4109.5C10—N1—C12113.8 (3)
O2—C1—O1123.0 (3)O5—N1—H1108.4
O2—C1—C2118.7 (2)C10—N1—H1108.4
O1—C1—C2118.3 (2)C12—N1—H1108.4
C3—C2—C7119.1 (3)C10—C9—H9A109.5
C3—C2—C1121.3 (2)C10—C9—H9B109.5
C7—C2—C1119.6 (2)H9A—C9—H9B109.5
C2—C3—C4120.8 (3)C10—C9—H9C109.5
C2—C3—H3119.6H9A—C9—H9C109.5
C4—C3—H3119.6H9B—C9—H9C109.5
C5—C4—C3119.3 (3)N1—C10—C9112.7 (3)
C5—C4—C8121.9 (3)N1—C10—H10A109.0
C3—C4—C8118.8 (2)C9—C10—H10A109.0
C6—C5—C4120.3 (3)N1—C10—H10B109.0
C6—C5—H5A119.8C9—C10—H10B109.0
C4—C5—H5A119.8H10A—C10—H10B107.8
C7—C6—C5120.3 (3)C12—C11—H11A109.5
C7—C6—H6119.8C12—C11—H11B109.5
C5—C6—H6119.8H11A—C11—H11B109.5
C6—C7—C2120.2 (3)C12—C11—H11C109.5
C6—C7—H7119.9H11A—C11—H11C109.5
C2—C7—H7119.9H11B—C11—H11C109.5
O3—C8—O4123.1 (3)N1—C12—C11112.5 (3)
O3—C8—C4123.8 (3)N1—C12—H12A109.1
O4—C8—C4113.1 (2)C11—C12—H12A109.1
N1—O5—H5109.5N1—C12—H12B109.1
O5—N1—C10109.4 (3)C11—C12—H12B109.1
O5—N1—C12108.4 (2)H12A—C12—H12B107.8
O2—C1—C2—C3176.0 (3)C5—C6—C7—C21.3 (5)
O1—C1—C2—C33.1 (4)C3—C2—C7—C60.1 (5)
O2—C1—C2—C74.8 (4)C1—C2—C7—C6179.1 (3)
O1—C1—C2—C7176.0 (3)C5—C4—C8—O3168.5 (3)
C7—C2—C3—C41.6 (4)C3—C4—C8—O310.4 (4)
C1—C2—C3—C4179.2 (3)C5—C4—C8—O412.4 (4)
C2—C3—C4—C52.1 (4)C3—C4—C8—O4168.7 (3)
C2—C3—C4—C8178.9 (2)O5—N1—C10—C960.7 (4)
C3—C4—C5—C60.9 (4)C12—N1—C10—C9177.9 (3)
C8—C4—C5—C6179.8 (3)O5—N1—C12—C1161.2 (4)
C4—C5—C6—C70.8 (5)C10—N1—C12—C11176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.911.852.702 (4)155
O5—H5···O20.821.742.545 (4)169
O4—H4···O1i0.821.792.606 (4)175
C10—H10A···O2ii0.972.583.373 (5)139
C12—H12A···O5iii0.972.513.426 (5)157
C12—H12B···O3iv0.972.533.117 (5)119
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+2, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H12NO+·C8H5O4
Mr255.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.535 (7), 11.937 (9), 11.660 (9)
β (°) 96.959 (15)
V3)1317.4 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.967, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6749, 2317, 1912
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.203, 1.19
No. of reflections2317
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2007).

Selected bond lengths (Å) top
O2—C11.238 (3)C1—O11.259 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.911.852.702 (4)155
O5—H5···O20.821.742.545 (4)169
O4—H4···O1i0.821.792.606 (4)175
C10—H10A···O2ii0.972.583.373 (5)139
C12—H12A···O5iii0.972.513.426 (5)157
C12—H12B···O3iv0.972.533.117 (5)119
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+2, z; (iv) x+1, y+1/2, z+1/2.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBourne, S. A., Mondal, A. & Zaworotko, M. J. (2001). Cryst. Eng. 4, 25–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDale, S. H., Elsgood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationJin, Z.-M., Feng, H., Tu, B., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. C61, o593–o595.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491–o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, N., Bond, A. D. & Jones, W. (2002). Cryst. Eng. 5, 9–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuge, T., Miyata, M. & Tohnai, N. (2006). Cryst. Growth Des. 6, 1272–1273.  Web of Science CSD CrossRef Google Scholar
First citationZhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. & Zhang, W.-P. (2007). Acta Cryst. E63, o2728.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds