organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl­diazen­yl-1,2-di­methyl-1H-indole

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Gazi University, 06500 Beşevler, Ankara, Turkey, and cDepartment of Chemistry, Atatürk University, 22240 Erzurum, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 4 August 2010; accepted 6 August 2010; online 18 August 2010)

In the title mol­ecule, C16H15N3, the indole ring system is planar within 0.021 (3) Å and the phenyl ring is inclined to this plane by 17.32 (14)°. ππ contacts involving the pyrrole rings of inversion-related indole units [centroid–centroid distance = 3.5187 (17) Å] stabilize the crystal structure.

Related literature

For the use and applications of azo compounds, see: Bach et al. (1996[Bach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135-4140.]); Bahatti & Seshadri (2004[Bahatti, H. S. & Seshadri, S. (2004). Color. Technol. 120, 151-155.]); Biswas & Umapathy (2000[Biswas, N. & Umapathy, S. (2000). J. Phys. Chem. A 104, 2734-2745.]); Catino & Farris (1985[Catino, S. C. & Farris, R. E. (1985). Azo dyes. In Concise encyclopedia of chemical technology, edited by M. Grayson, pp. 142-144. New York: John Wiley and Sons.]); Clark & Hester (1993[Clark, R. J. H. & Hester, R. E. (1993). Spectroscopy of New Materials: Advances in Spectroscopy, edited by R. J. H. Clark & R. E. Hester. New York: John Wiley and Sons.]); Fadda et al. (1994[Fadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. J. (1994). J. Chem. Technol. Biotechnol. 61, 343-349.]); Hunger (2003[Hunger, K. (2003). Industrial dyes, chemistry, properties, applications, edited by K. Hunger, pp. 20-35. Weinheim: Wiley-VCH.]); Taniike et al. (1996[Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508-15516.]); Zollinger (2003[Zollinger, H. (2003). Colour chemistry: synthesis, properties and applications of organic dyes and pigments, edited by H. Zollinger, 3rd rev. ed. Weinheim: Wiley-VCH.]); Willner & Rubin (1996[Willner, I. & Rubin, S. (1996). Angew. Chem. Int. Ed. Engl. 35, 367-385.]). For related structures, see: Hökelek et al. (2007a[Hökelek, T., Seferoğlu, Z., Şahin, E. & Ertan, N. (2007a). Acta Cryst. E63, o3281-o3282.],b[Hökelek, T., Seferoğlu, Z., Şahin, E. & Kaynak, F. B. (2007b). Acta Cryst. E63, o2837-o2839.]); Seferoğlu et al. (2006[Seferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2006). Acta Cryst. E62, o2108-o2110.], 2007[Seferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2007). Acta Cryst. E63, o568-o570.], 2008[Seferoğlu, Z., Ertan, N., Hökelek, T. & Şahin, E. (2008). Dyes Pigm. 77, 614-625.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3

  • Mr = 249.31

  • Monoclinic, C 2/c

  • a = 16.3442 (3) Å

  • b = 10.2713 (2) Å

  • c = 16.5312 (3) Å

  • β = 104.264 (3)°

  • V = 2689.64 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.35 × 0.28 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • 27159 measured reflections

  • 2762 independent reflections

  • 1503 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.198

  • S = 1.04

  • 2762 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azo compounds are very important in the field of dyes, pigments and advanced materials (Hunger, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic syntheses (Catino & Farris, 1985; Zollinger, 2003; Bahatti & Seshadri, 2004; Taniike et al., 1996; Fadda et al., 1994). They are also used in the fields of nonlinear optics and optical data storage (Taniike et al., 1996; Bach et al., 1996; Clark & Hester, 1993). Their optical properties depend on not only the spectroscopic properties of the molecules but also their crystallographic arrangements (Biswas & Umapathy, 2000; Willner & Rubin, 1996). Previously, the syntheses, crystal structures, spectroscopic and tautomeric properties of novel azo indole dyes have been reported in solution and solid state (Hökelek et al., 2007a,b; Seferoğlu et al., 2008; Seferoğlu et al., 2007; Seferoğlu et al., 2006). We report herein on the synthesis and crystal structure of the title compound.

The molecular structure of the title molecule is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are in normal ranges. The indole ring system is planar to within 0.022 (3) Å, with a dihedral angle of 1.22 (15)° between rings A (N1/C1-C3/C8) and B (C3-C8). The orientation of the phenyl ring C (C11-C16) with respect to the indole ring system may be described by the dihedral angle of 17.32 (14)°. Atoms C9, C10, N2 and N3 are displaced by 0.006 (3), -0.107 (4), 0.003 (2) and 0.050 (2) Å, respectively, from the plane of the indole ring system, hence are almost coplanar.

In the crystal there are π···π contacts involving A rings, of the indole group, related by an inversion center, which stabilize the crystal packing: Cg1—Cg1i distance is 3.519 (2) Å [symmetry code: (i) -x, -y, -z, where Cg1 is the centroid of the pyrrole ring A (N1/C1-C3/C8)].

Related literature top

For the use and applications of azo compounds, see: Bach et al. (1996); Bahatti & Seshadri (2004); Biswas & Umapathy (2000); Catino & Farris (1985); Clark & Hester (1993); Fadda et al. (1994); Hunger (2003); Taniike et al. (1996); Zollinger (2003); Willner & Rubin (1996). For related structures, see: Hökelek et al. (2007a,b); Seferoğlu et al. (2006, 2007, 2008). For standard bond lengths, see: Allen et al. (1987).

For related literature, see: .

Experimental top

For the preparation of the title compound, aniline (190 mg, 2 mmol) was dissolved in HCl (1.5 ml) and water (4.0 ml). The solution was cooled in an ice-salt bath and a cold solution of NaNO2 (150 mg, 2 mmol) in water (3.0 ml) was added dropwise with stirring. The resulting diazonium salt was cooled in an ice-salt bath and then added dropwise with stirring to 1,2-dimethylindole (300 mg, 2 mmol) in an acetic acid/propionic acid mixture (2:1, 8.0 ml). The solution was stirred at 273-278 K for 1 h and the pH of the reaction mixture was maintained at 4-6 by the simultaneous addition of a sodium hydroxide solution (40-50 ml). The mixture was stirred for a further 1 h. The resulting solid was filtered, washed with cold water and crystallized from ethanol (yield; 440 mg, 92%, m.p. 398 K).

Refinement top

The C9 methyl H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.96 Å, with Uiso(H) = 1.5Ueq(C). The remaining H-atoms were located in a difference Fourier map and were refined freely.

Structure description top

Azo compounds are very important in the field of dyes, pigments and advanced materials (Hunger, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic syntheses (Catino & Farris, 1985; Zollinger, 2003; Bahatti & Seshadri, 2004; Taniike et al., 1996; Fadda et al., 1994). They are also used in the fields of nonlinear optics and optical data storage (Taniike et al., 1996; Bach et al., 1996; Clark & Hester, 1993). Their optical properties depend on not only the spectroscopic properties of the molecules but also their crystallographic arrangements (Biswas & Umapathy, 2000; Willner & Rubin, 1996). Previously, the syntheses, crystal structures, spectroscopic and tautomeric properties of novel azo indole dyes have been reported in solution and solid state (Hökelek et al., 2007a,b; Seferoğlu et al., 2008; Seferoğlu et al., 2007; Seferoğlu et al., 2006). We report herein on the synthesis and crystal structure of the title compound.

The molecular structure of the title molecule is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are in normal ranges. The indole ring system is planar to within 0.022 (3) Å, with a dihedral angle of 1.22 (15)° between rings A (N1/C1-C3/C8) and B (C3-C8). The orientation of the phenyl ring C (C11-C16) with respect to the indole ring system may be described by the dihedral angle of 17.32 (14)°. Atoms C9, C10, N2 and N3 are displaced by 0.006 (3), -0.107 (4), 0.003 (2) and 0.050 (2) Å, respectively, from the plane of the indole ring system, hence are almost coplanar.

In the crystal there are π···π contacts involving A rings, of the indole group, related by an inversion center, which stabilize the crystal packing: Cg1—Cg1i distance is 3.519 (2) Å [symmetry code: (i) -x, -y, -z, where Cg1 is the centroid of the pyrrole ring A (N1/C1-C3/C8)].

For the use and applications of azo compounds, see: Bach et al. (1996); Bahatti & Seshadri (2004); Biswas & Umapathy (2000); Catino & Farris (1985); Clark & Hester (1993); Fadda et al. (1994); Hunger (2003); Taniike et al. (1996); Zollinger (2003); Willner & Rubin (1996). For related structures, see: Hökelek et al. (2007a,b); Seferoğlu et al. (2006, 2007, 2008). For standard bond lengths, see: Allen et al. (1987).

For related literature, see: .

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-Phenyldiazenyl-1,2-dimethyl-1H-indole top
Crystal data top
C16H15N3F(000) = 1056
Mr = 249.31Dx = 1.231 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3396 reflections
a = 16.3442 (3) Åθ = 2.4–26.4°
b = 10.2713 (2) ŵ = 0.08 mm1
c = 16.5312 (3) ÅT = 294 K
β = 104.264 (3)°Block, orange
V = 2689.64 (9) Å30.35 × 0.28 × 0.18 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1503 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.103
Graphite monochromatorθmax = 26.4°, θmin = 2.4°
ω scansh = 2020
27159 measured reflectionsk = 1212
2762 independent reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0864P)2 + 0.4512P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H15N3V = 2689.64 (9) Å3
Mr = 249.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.3442 (3) ŵ = 0.08 mm1
b = 10.2713 (2) ÅT = 294 K
c = 16.5312 (3) Å0.35 × 0.28 × 0.18 mm
β = 104.264 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1503 reflections with I > 2σ(I)
27159 measured reflectionsRint = 0.103
2762 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.11 e Å3
2762 reflectionsΔρmin = 0.18 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08081 (14)0.0254 (2)0.10187 (13)0.0815 (7)
N20.14870 (13)0.1760 (2)0.06346 (13)0.0776 (6)
N30.12083 (14)0.2792 (2)0.10430 (14)0.0809 (6)
C10.13054 (17)0.0347 (3)0.04696 (16)0.0788 (7)
C20.10816 (16)0.1455 (3)0.00174 (16)0.0735 (7)
C30.04189 (16)0.2101 (2)0.02639 (15)0.0740 (7)
C40.00515 (18)0.3236 (3)0.00533 (18)0.0830 (8)
H40.0013 (16)0.382 (3)0.0413 (16)0.091 (8)*
C50.06401 (19)0.3556 (3)0.0491 (2)0.0941 (9)
H50.0962 (17)0.443 (3)0.0354 (16)0.098 (8)*
C60.0776 (2)0.2777 (3)0.1129 (2)0.1000 (10)
H60.1200 (19)0.301 (3)0.1470 (17)0.105 (9)*
C70.03322 (19)0.1639 (3)0.13422 (18)0.0891 (9)
H70.0458 (17)0.109 (3)0.1772 (16)0.096 (9)*
C80.02687 (17)0.1317 (3)0.09164 (15)0.0765 (7)
C90.0837 (2)0.0775 (3)0.16314 (18)0.1000 (10)
H9A0.02730.10570.16150.150*
H9B0.10990.04510.21780.150*
H9C0.11570.14960.15040.150*
C100.1983 (2)0.0607 (4)0.0456 (3)0.1006 (10)
H1010.177 (2)0.153 (4)0.032 (2)0.139 (13)*
H1020.239 (2)0.063 (3)0.097 (2)0.118 (12)*
H1030.232 (2)0.032 (3)0.004 (2)0.122 (12)*
C110.16377 (17)0.3083 (3)0.16766 (16)0.0773 (7)
C120.24027 (19)0.2553 (3)0.17310 (19)0.0845 (8)
H120.2668 (19)0.184 (3)0.1278 (18)0.112 (10)*
C130.2756 (2)0.2934 (4)0.2364 (2)0.1010 (10)
H130.326 (2)0.255 (3)0.2414 (18)0.099 (9)*
C140.2366 (3)0.3836 (4)0.2952 (2)0.1079 (11)
H140.265 (3)0.408 (4)0.341 (2)0.158 (14)*
C150.1604 (3)0.4367 (4)0.2903 (2)0.1051 (10)
H150.1309 (17)0.507 (3)0.3271 (18)0.096 (9)*
C160.1245 (2)0.4012 (3)0.2262 (2)0.0936 (9)
H160.0750 (19)0.438 (3)0.2170 (18)0.102 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0829 (15)0.0828 (15)0.0780 (14)0.0006 (12)0.0181 (12)0.0063 (11)
N20.0683 (13)0.0804 (15)0.0873 (14)0.0050 (11)0.0252 (11)0.0059 (12)
N30.0752 (14)0.0862 (15)0.0865 (15)0.0040 (12)0.0302 (12)0.0007 (12)
C10.0758 (17)0.0795 (17)0.0772 (17)0.0019 (14)0.0116 (14)0.0068 (14)
C20.0680 (15)0.0758 (16)0.0790 (16)0.0035 (13)0.0222 (13)0.0027 (13)
C30.0739 (16)0.0765 (17)0.0744 (16)0.0045 (13)0.0233 (13)0.0015 (13)
C40.0842 (18)0.0767 (18)0.094 (2)0.0042 (15)0.0336 (15)0.0079 (15)
C50.090 (2)0.086 (2)0.117 (2)0.0084 (16)0.0458 (18)0.0033 (18)
C60.101 (2)0.103 (2)0.110 (2)0.0037 (19)0.051 (2)0.0061 (19)
C70.091 (2)0.105 (2)0.0790 (18)0.0056 (18)0.0354 (15)0.0061 (16)
C80.0760 (16)0.0780 (17)0.0737 (16)0.0014 (14)0.0150 (13)0.0014 (13)
C90.115 (2)0.092 (2)0.0880 (19)0.0002 (17)0.0153 (17)0.0204 (16)
C100.093 (2)0.091 (2)0.112 (3)0.0140 (19)0.016 (2)0.004 (2)
C110.0759 (17)0.0817 (17)0.0782 (17)0.0150 (14)0.0264 (14)0.0105 (14)
C120.0813 (19)0.090 (2)0.089 (2)0.0125 (16)0.0355 (16)0.0158 (16)
C130.097 (2)0.110 (2)0.110 (3)0.016 (2)0.053 (2)0.023 (2)
C140.117 (3)0.118 (3)0.100 (3)0.034 (2)0.048 (2)0.013 (2)
C150.114 (3)0.109 (3)0.092 (2)0.023 (2)0.025 (2)0.006 (2)
C160.088 (2)0.101 (2)0.095 (2)0.0115 (18)0.0307 (18)0.0004 (18)
Geometric parameters (Å, º) top
N1—C11.363 (3)C8—C71.382 (4)
N1—C81.388 (3)C9—H9A0.9600
N1—C91.457 (3)C9—H9B0.9600
N2—C21.382 (3)C9—H9C0.9600
N3—N21.279 (3)C10—H1011.02 (4)
N3—C111.429 (3)C10—H1020.93 (3)
C1—C101.482 (4)C10—H1031.03 (3)
C2—C11.390 (4)C11—C161.397 (4)
C3—C21.442 (4)C12—C111.387 (4)
C3—C41.393 (4)C12—C131.371 (4)
C3—C81.415 (3)C12—H121.06 (3)
C4—C51.378 (4)C13—C141.380 (5)
C4—H41.00 (3)C13—H130.93 (3)
C5—H51.04 (3)C14—C151.381 (5)
C6—C51.384 (4)C14—H141.01 (4)
C6—H61.02 (3)C15—H150.99 (3)
C7—C61.375 (4)C16—C151.381 (4)
C7—H70.96 (3)C16—H160.94 (3)
C1—N1—C8109.2 (2)N1—C9—H9B109.5
C1—N1—C9126.3 (2)N1—C9—H9C109.5
C8—N1—C9124.5 (2)H9A—C9—H9B109.5
N3—N2—C2113.8 (2)H9A—C9—H9C109.5
N2—N3—C11112.7 (2)H9B—C9—H9C109.5
N1—C1—C2109.2 (2)C1—C10—H102112 (2)
N1—C1—C10122.2 (3)C1—C10—H101114 (2)
C2—C1—C10128.6 (3)C1—C10—H103110.4 (18)
N2—C2—C1120.5 (2)H102—C10—H101108 (3)
N2—C2—C3132.0 (2)H102—C10—H103104 (3)
C1—C2—C3107.5 (2)H101—C10—H103109 (3)
C4—C3—C2135.8 (2)C12—C11—N3125.3 (3)
C4—C3—C8118.6 (2)C12—C11—C16119.4 (3)
C8—C3—C2105.6 (2)C16—C11—N3115.2 (3)
C3—C4—H4122.5 (15)C11—C12—H12116.3 (17)
C5—C4—C3118.8 (3)C13—C12—C11119.5 (3)
C5—C4—H4118.7 (15)C13—C12—H12124.2 (17)
C4—C5—C6121.7 (3)C12—C13—C14121.5 (4)
C4—C5—H5118.3 (15)C12—C13—H13119.7 (19)
C6—C5—H5119.9 (15)C14—C13—H13118.8 (18)
C5—C6—H6122.8 (16)C13—C14—C15119.4 (3)
C7—C6—C5120.9 (3)C13—C14—H14118 (2)
C7—C6—H6116.3 (16)C15—C14—H14122 (2)
C6—C7—C8117.9 (3)C14—C15—H15124.3 (17)
C6—C7—H7119.2 (17)C16—C15—C14120.0 (4)
C8—C7—H7122.9 (17)C16—C15—H15115.4 (17)
N1—C8—C3108.5 (2)C11—C16—H16115.3 (18)
C7—C8—N1129.5 (3)C15—C16—C11120.2 (4)
C7—C8—C3122.0 (3)C15—C16—H16124.5 (18)
N1—C9—H9A109.5
C8—N1—C1—C21.7 (3)C8—C3—C2—C10.7 (3)
C8—N1—C1—C10176.5 (3)C2—C3—C4—C5178.6 (3)
C9—N1—C1—C2179.3 (2)C8—C3—C4—C50.4 (4)
C9—N1—C1—C102.4 (4)C2—C3—C8—N10.3 (3)
C1—N1—C8—C31.2 (3)C2—C3—C8—C7179.8 (2)
C1—N1—C8—C7178.9 (3)C4—C3—C8—N1179.6 (2)
C9—N1—C8—C3179.8 (2)C4—C3—C8—C70.5 (4)
C9—N1—C8—C70.0 (4)C3—C4—C5—C60.2 (5)
N3—N2—C2—C1178.9 (2)C7—C6—C5—C40.9 (5)
N3—N2—C2—C31.8 (4)C8—C7—C6—C51.8 (5)
C11—N3—N2—C2179.98 (19)N1—C8—C7—C6178.6 (3)
N2—N3—C11—C1215.8 (4)C3—C8—C7—C61.6 (4)
N2—N3—C11—C16166.1 (2)N3—C11—C16—C15179.9 (3)
N2—C2—C1—N1179.0 (2)C12—C11—C16—C152.0 (4)
N2—C2—C1—C102.9 (4)C11—C12—C13—C140.1 (5)
C3—C2—C1—N11.5 (3)C13—C12—C11—N3178.8 (2)
C3—C2—C1—C10176.6 (3)C13—C12—C11—C160.9 (4)
C4—C3—C2—N21.0 (5)C13—C14—C15—C161.1 (5)
C4—C3—C2—C1178.4 (3)C12—C13—C14—C150.0 (5)
C8—C3—C2—N2179.9 (2)C11—C16—C15—C142.1 (5)

Experimental details

Crystal data
Chemical formulaC16H15N3
Mr249.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)16.3442 (3), 10.2713 (2), 16.5312 (3)
β (°) 104.264 (3)
V3)2689.64 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27159, 2762, 1503
Rint0.103
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.198, 1.04
No. of reflections2762
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135–4140.  CrossRef CAS Web of Science Google Scholar
First citationBahatti, H. S. & Seshadri, S. (2004). Color. Technol. 120, 151–155.  Google Scholar
First citationBiswas, N. & Umapathy, S. (2000). J. Phys. Chem. A 104, 2734–2745.  Web of Science CrossRef CAS Google Scholar
First citationCatino, S. C. & Farris, R. E. (1985). Azo dyes. In Concise encyclopedia of chemical technology, edited by M. Grayson, pp. 142–144. New York: John Wiley and Sons.  Google Scholar
First citationClark, R. J. H. & Hester, R. E. (1993). Spectroscopy of New Materials: Advances in Spectroscopy, edited by R. J. H. Clark & R. E. Hester. New York: John Wiley and Sons.  Google Scholar
First citationFadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. J. (1994). J. Chem. Technol. Biotechnol. 61, 343–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Seferoğlu, Z., Şahin, E. & Ertan, N. (2007a). Acta Cryst. E63, o3281–o3282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Seferoğlu, Z., Şahin, E. & Kaynak, F. B. (2007b). Acta Cryst. E63, o2837–o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunger, K. (2003). Industrial dyes, chemistry, properties, applications, edited by K. Hunger, pp. 20–35. Weinheim: Wiley-VCH.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSeferoğlu, Z., Ertan, N., Hökelek, T. & Şahin, E. (2008). Dyes Pigm. 77, 614–625.  Google Scholar
First citationSeferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2006). Acta Cryst. E62, o2108–o2110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2007). Acta Cryst. E63, o568–o570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516.  CrossRef CAS Web of Science Google Scholar
First citationWillner, I. & Rubin, S. (1996). Angew. Chem. Int. Ed. Engl. 35, 367–385.  CrossRef CAS Web of Science Google Scholar
First citationZollinger, H. (2003). Colour chemistry: synthesis, properties and applications of organic dyes and pigments, edited by H. Zollinger, 3rd rev. ed. Weinheim: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds