organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Ethyl-5-methyl-4-phenyl-5H-1,2,4-triazol-3(4H)-thione

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 30 July 2010; accepted 30 July 2010; online 11 August 2010)

The five-membered ring of the title compound Δ1-1,2,4-triazoline-5-thione, C11H13N3S, is almost planar (r.m.s. deviation = 0.009 Å); the phenyl ring is aligned at 84.6 (2)° with respect to the five-membered ring. The crystal studied was a racemic twin with an approximate 20% minor twin component. Weak inter­molecular C—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis of this and other Δ1-[1,2,4]-triazoline-5-thio­nes, see: Kabashima et al. (1991[Kabashima, S., Okawara, T., Yamasaki, T. & Furukawa, M. (1991). J. Heterocycl. Chem. 28, 1957-1960.]); Landquist (1970[Landquist, J. K. (1970). J. Chem. Soc. C, pp. 63-66.]); Tripathi & Dhar (1986[Tripathi, M. & Dhar, D. N. (1986). Synthesis, pp. 1015.]). For the crystal structure of the related compound 5,5-dimethyl-4-phenyl-1,2,4-triazol-3-thione, see: Katritzky et al. (1984[Katritzky, A. R., Faid-Allah, H. M., Aghabozorg, H. & Palenik, G. J. (1984). Chem. Scr. 23, 134-138.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3S

  • Mr = 219.30

  • Tetragonal, [P \overline 42_1 c ]

  • a = 17.962 (4) Å

  • c = 6.9992 (14) Å

  • V = 2258.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.987

  • 10418 measured reflections

  • 1987 independent reflections

  • 1546 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.186

  • S = 1.07

  • 1987 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 837 Friedel pairs

  • Flack parameter: −0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N2i 0.98 2.56 3.519 (9) 165
Symmetry code: (i) -y+1, x, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

3-Phenyl-Δ1-[1,2,4]-triazoline-5-thiones are synthesized by the heterocyclization of the Schiff base condensation product of the reaction between phenylthiosemicarbazide and a ketone in the presence of chlorocarbonylsulfenyl chloride (Kabashima et al., 1991), chlorosulfonyl isocyanate (Tripathi & Dhar, 1986) and manganese dioxide (Landquist, 1970). In the present study, the oxidizing agent is 1,10-phenanthroline-5,6-dione, commonly known as phendione. 4-Phenyl thiosemicarbazide condensed with methyl ethyl ketone to form the initial Schiff base, which was then oxidized to the title compound by phendione (Scheme I, Fig. 1). Intermolecular weak C—H···N hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

For the synthesis of this and other Δ1-[1,2,4]-triazoline-5-thiones, see: Kabashima et al. (1991); Landquist (1970); Tripathi & Dhar (1986). For the crystal structure of the related compound 5,5-dimethyl-4-phenyl-1,2,4-triazol-3-thione, see: Katritzky et al. (1984).

Experimental top

4-Phenyl thiosemicarbazide (2 mmol, 0.33 g) and 1,10-phenanthroline-5,6-dione (1 mmol, 0.21 g) were heated in a mixture of methyl ethyl ketone (5 ml) and ethanol (10 ml). The yellow precipitate that formed was removed by filtration. Slow evaporation of the orange filtrate afforded the title compound.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Structure description top

3-Phenyl-Δ1-[1,2,4]-triazoline-5-thiones are synthesized by the heterocyclization of the Schiff base condensation product of the reaction between phenylthiosemicarbazide and a ketone in the presence of chlorocarbonylsulfenyl chloride (Kabashima et al., 1991), chlorosulfonyl isocyanate (Tripathi & Dhar, 1986) and manganese dioxide (Landquist, 1970). In the present study, the oxidizing agent is 1,10-phenanthroline-5,6-dione, commonly known as phendione. 4-Phenyl thiosemicarbazide condensed with methyl ethyl ketone to form the initial Schiff base, which was then oxidized to the title compound by phendione (Scheme I, Fig. 1). Intermolecular weak C—H···N hydrogen bonding is present in the crystal structure (Table 1).

For the synthesis of this and other Δ1-[1,2,4]-triazoline-5-thiones, see: Kabashima et al. (1991); Landquist (1970); Tripathi & Dhar (1986). For the crystal structure of the related compound 5,5-dimethyl-4-phenyl-1,2,4-triazol-3-thione, see: Katritzky et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H13N3S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
5-Ethyl-5-methyl-4-phenyl-5H-1,2,4-triazol-3(4H)-thione top
Crystal data top
C11H13N3SDx = 1.290 Mg m3
Mr = 219.30Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 926 reflections
Hall symbol: P -4 2nθ = 2.5–18.5°
a = 17.962 (4) ŵ = 0.26 mm1
c = 6.9992 (14) ÅT = 100 K
V = 2258.2 (6) Å3Prism, orange
Z = 80.30 × 0.05 × 0.05 mm
F(000) = 928
Data collection top
Bruker SMART APEX
diffractometer
1987 independent reflections
Radiation source: fine-focus sealed tube1546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2120
Tmin = 0.927, Tmax = 0.987k = 2121
10418 measured reflectionsl = 85
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0992P)2 + 1.8759P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1987 reflectionsΔρmax = 0.69 e Å3
136 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 837 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
C11H13N3SZ = 8
Mr = 219.30Mo Kα radiation
Tetragonal, P421cµ = 0.26 mm1
a = 17.962 (4) ÅT = 100 K
c = 6.9992 (14) Å0.30 × 0.05 × 0.05 mm
V = 2258.2 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
1987 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1546 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.987Rint = 0.087
10418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.186Δρmax = 0.69 e Å3
S = 1.07Δρmin = 0.31 e Å3
1987 reflectionsAbsolute structure: Flack (1983), 837 Friedel pairs
136 parametersAbsolute structure parameter: 0.2 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47452 (8)0.23341 (7)1.2411 (2)0.0351 (4)
N10.4463 (3)0.2810 (3)0.8841 (6)0.0351 (11)
N20.4094 (3)0.3589 (3)1.1143 (7)0.0531 (15)
N30.3934 (3)0.3924 (3)0.9623 (8)0.0511 (14)
C10.4778 (3)0.2198 (2)0.7806 (6)0.0237 (10)
C20.5518 (3)0.2275 (3)0.7230 (8)0.0353 (13)
H20.58010.27060.75300.042*
C30.5823 (3)0.1677 (3)0.6175 (9)0.0441 (15)
H30.63230.17040.57380.053*
C40.5409 (4)0.1065 (3)0.5785 (8)0.0480 (17)
H40.56230.06710.50660.058*
C50.4687 (4)0.1003 (3)0.6404 (8)0.0435 (15)
H50.44060.05680.61360.052*
C60.4381 (3)0.1576 (3)0.7413 (9)0.0351 (12)
H60.38810.15370.78460.042*
C70.4431 (3)0.2869 (3)1.0741 (7)0.0371 (14)
C80.4127 (3)0.3477 (3)0.7940 (8)0.0398 (14)
C90.4652 (4)0.3911 (3)0.6695 (9)0.0525 (17)
H9A0.50980.40410.74290.079*
H9B0.44070.43670.62540.079*
H9C0.47940.36070.55900.079*
C100.3418 (3)0.3257 (4)0.6851 (9)0.0528 (18)
H10A0.32100.37070.62310.063*
H10B0.35540.29020.58280.063*
C110.2824 (4)0.2911 (5)0.8070 (11)0.073 (2)
H11A0.23910.27890.72760.109*
H11B0.26750.32620.90720.109*
H11C0.30170.24550.86590.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (8)0.0347 (6)0.0174 (6)0.0009 (6)0.0038 (7)0.0016 (7)
N10.051 (3)0.033 (2)0.021 (2)0.014 (2)0.004 (2)0.001 (2)
N20.069 (4)0.058 (3)0.033 (3)0.025 (3)0.008 (3)0.007 (3)
N30.058 (3)0.048 (3)0.047 (3)0.010 (3)0.015 (3)0.009 (3)
C10.035 (2)0.024 (2)0.012 (2)0.0085 (19)0.006 (2)0.000 (2)
C20.042 (3)0.031 (3)0.032 (3)0.009 (2)0.009 (3)0.000 (3)
C30.036 (3)0.055 (4)0.041 (4)0.012 (3)0.015 (3)0.008 (3)
C40.088 (5)0.034 (3)0.022 (3)0.023 (3)0.001 (3)0.002 (3)
C50.072 (4)0.029 (3)0.029 (3)0.006 (3)0.010 (3)0.003 (2)
C60.038 (3)0.038 (3)0.030 (3)0.001 (2)0.006 (3)0.001 (3)
C70.053 (4)0.042 (3)0.016 (3)0.019 (2)0.002 (2)0.008 (2)
C80.044 (3)0.039 (3)0.037 (4)0.006 (2)0.001 (3)0.001 (3)
C90.059 (4)0.048 (3)0.051 (4)0.006 (3)0.019 (3)0.021 (3)
C100.047 (4)0.066 (4)0.046 (4)0.004 (3)0.003 (3)0.009 (3)
C110.045 (4)0.101 (6)0.072 (6)0.004 (4)0.009 (4)0.012 (5)
Geometric parameters (Å, º) top
S1—C71.614 (5)C5—C61.364 (8)
N1—C71.335 (7)C5—H50.9500
N1—C11.433 (6)C6—H60.9500
N1—C81.483 (7)C8—C91.502 (8)
N2—N31.255 (7)C8—C101.535 (8)
N2—C71.456 (7)C9—H9A0.9800
N3—C81.466 (8)C9—H9B0.9800
C1—C61.355 (7)C9—H9C0.9800
C1—C21.396 (7)C10—C111.502 (10)
C2—C31.415 (8)C10—H10A0.9900
C2—H20.9500C10—H10B0.9900
C3—C41.355 (9)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C51.372 (9)C11—H11C0.9800
C4—H40.9500
C7—N1—C1125.5 (5)N2—C7—S1122.3 (4)
C7—N1—C8110.0 (5)N3—C8—N1101.3 (4)
C1—N1—C8124.5 (4)N3—C8—C9109.3 (5)
N3—N2—C7110.9 (5)N1—C8—C9114.2 (5)
N2—N3—C8111.4 (4)N3—C8—C10110.1 (5)
C6—C1—C2121.7 (4)N1—C8—C10109.9 (5)
C6—C1—N1121.8 (5)C9—C8—C10111.5 (5)
C2—C1—N1116.5 (4)C8—C9—H9A109.5
C1—C2—C3116.4 (5)C8—C9—H9B109.5
C1—C2—H2121.8H9A—C9—H9B109.5
C3—C2—H2121.8C8—C9—H9C109.5
C4—C3—C2120.6 (5)H9A—C9—H9C109.5
C4—C3—H3119.7H9B—C9—H9C109.5
C2—C3—H3119.7C11—C10—C8114.4 (6)
C3—C4—C5121.4 (5)C11—C10—H10A108.7
C3—C4—H4119.3C8—C10—H10A108.7
C5—C4—H4119.3C11—C10—H10B108.7
C6—C5—C4119.0 (5)C8—C10—H10B108.7
C6—C5—H5120.5H10A—C10—H10B107.6
C4—C5—H5120.5C10—C11—H11A109.5
C1—C6—C5121.0 (5)C10—C11—H11B109.5
C1—C6—H6119.5H11A—C11—H11B109.5
C5—C6—H6119.5C10—C11—H11C109.5
N1—C7—N2106.3 (5)H11A—C11—H11C109.5
N1—C7—S1131.2 (5)H11B—C11—H11C109.5
C7—N2—N3—C80.9 (7)C8—N1—C7—S1176.6 (5)
C7—N1—C1—C685.0 (7)N3—N2—C7—N10.5 (7)
C8—N1—C1—C695.6 (6)N3—N2—C7—S1175.9 (5)
C7—N1—C1—C294.8 (7)N2—N3—C8—N11.9 (6)
C8—N1—C1—C284.7 (6)N2—N3—C8—C9122.7 (6)
C6—C1—C2—C31.5 (7)N2—N3—C8—C10114.5 (6)
N1—C1—C2—C3178.8 (4)C7—N1—C8—N32.2 (6)
C1—C2—C3—C40.7 (8)C1—N1—C8—N3177.3 (5)
C2—C3—C4—C50.5 (9)C7—N1—C8—C9119.6 (6)
C3—C4—C5—C60.9 (9)C1—N1—C8—C960.0 (7)
C2—C1—C6—C51.1 (8)C7—N1—C8—C10114.3 (5)
N1—C1—C6—C5179.1 (5)C1—N1—C8—C1066.2 (7)
C4—C5—C6—C10.1 (9)N3—C8—C10—C1150.8 (8)
C1—N1—C7—N2177.8 (5)N1—C8—C10—C1160.0 (7)
C8—N1—C7—N21.8 (7)C9—C8—C10—C11172.4 (6)
C1—N1—C7—S12.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N2i0.982.563.519 (9)165
Symmetry code: (i) y+1, x, z+2.

Experimental details

Crystal data
Chemical formulaC11H13N3S
Mr219.30
Crystal system, space groupTetragonal, P421c
Temperature (K)100
a, c (Å)17.962 (4), 6.9992 (14)
V3)2258.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.927, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
10418, 1987, 1546
Rint0.087
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.186, 1.07
No. of reflections1987
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.31
Absolute structureFlack (1983), 837 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N2i0.982.563.519 (9)165
Symmetry code: (i) y+1, x, z+2.
 

Acknowledgements

We thank the University of Malaya (UMRG RG090 10AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabashima, S., Okawara, T., Yamasaki, T. & Furukawa, M. (1991). J. Heterocycl. Chem. 28, 1957–1960.  CrossRef CAS Google Scholar
First citationKatritzky, A. R., Faid-Allah, H. M., Aghabozorg, H. & Palenik, G. J. (1984). Chem. Scr. 23, 134–138.  CAS Google Scholar
First citationLandquist, J. K. (1970). J. Chem. Soc. C, pp. 63–66.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, M. & Dhar, D. N. (1986). Synthesis, pp. 1015.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds