metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-1,2-bis­­(4-pyrid­yl)ethene-κ2N:N′]-di-μ3-bromido-dicopper(I)]

aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and bGeneral Education Center, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 30 July 2010; accepted 2 August 2010; online 11 August 2010)

In the title polymeric CuI compound, [Cu2Br2(C12H10N2)]n, the Cu cation is coordinated by an N atom from the 1,2-bis­(4-pyrid­yl)ethene ligand and three Br anions in a distorted tetra­hedral CuBr3N coordination geometry. Each Br anion bridges three Cu cations related by inversion centers, forming a stair-like polymeric chain along the a axis, and the terminal N atoms of the 1,2-bis­(4-pyrid­yl)ethene ligand, located across an inversion center, coordinate the Cu cations from neighboring chains, forming polymeric sheets.

Related literature

For related structures, see: Yang (2009[Yang, M.-H. (2009). Acta Cryst. C65, m59-m61.]); Wang (2008[Wang, W. (2008). Acta Cryst. E64, m759.]); Näther & Greve (2001[Näther, C. & Greve, J. (2001). Acta Cryst. C57, 377-378.]). For stair-like structures, see: Healy et al. (1989[Healy, P. C., Kildea, J., Skelton, B. & White, A. (1989). Aust. J. Chem. 42, 79-82.]); Jasinski et al. (1985[Jasinski, J. P., Roth, N. P. & Holt, E. M. (1985). Inorg. Chim. Acta, 97, 91-97.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Br2(C12H10N2)]

  • Mr = 234.56

  • Monoclinic, P 21 /c

  • a = 3.9066 (3) Å

  • b = 15.1047 (13) Å

  • c = 11.1050 (9) Å

  • β = 95.149 (2)°

  • V = 652.64 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.36 mm−1

  • T = 294 K

  • 0.40 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]) Tmin = 0.487, Tmax = 0.938

  • 3454 measured reflections

  • 1162 independent reflections

  • 1083 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.096

  • S = 1.30

  • 1162 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

Br—Cu1 2.5645 (12)
Br—Cu1i 2.4723 (13)
Br—Cu1ii 2.5195 (13)
N1—Cu1 2.009 (5)
Br—Cu1—N1 105.79 (16)
Br—Cu1—Bri 108.79 (4)
Br—Cu1—Brii 110.86 (4)
Bri—Cu1—N1 119.11 (16)
Brii—Cu1—N1 109.30 (16)
Bri—Cu1—Brii 102.99 (4)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In the structural investigations of compounds of CuI halide, such as bromide (Yang, 2009; Wang, 2008; Näther & Greve, 2001), has been found. A four coordination polymer, resulted from the hydrothermal treatment of CuBr with 1,2-bis(4-pyridyl)ethene.

As Fig. 1, the symmetric unit consists of one copper(I) ion, one bromide ligand and half 1,2-bis(4-pyridyl)ethene ligand, all on general positions. The CuI atom is tetrahedral and coordinated by three µ3-bridging Br atoms and the each bromide bridges the other two Cu cations, while the N atoms of 1,2-bis(4-pyridyl)ethene ligand coordinate the other Cu cations, forming the three-dimensional polymeric architecture (Fig. 2).

The polymer frameworks has four-membered Cu—Br—Cu—Br units that form the step of a stair (Healy et al., 1989; Jasinski et al., 1985) and 1,2-bis(4-pyridyl)ethene ligand across those stairs, shown as Fig. 2. Cu···Cu distances are between 2.8852 (16)~2.9332 (16) Å and Cu—Br—Cu angles are 71.21 (4)~102.99 (4), respectively.

Related literature top

For related structures, see: Yang (2009); Wang (2008); Näther & Greve (2001). For stair-like structures, see: Healy et al. (1989); Jasinski et al. (1985).

Experimental top

CuBr (0.1097 g, 0.50 mmol) and 1,2-bis(4-pyridyl)ethene (0.0913 g, 0.50 mmol) were mixed in 10 ml deionized water. After being stirred for 30 min, the mixture was placed in a 25 ml Teflon liner reactor and heated at 423 K in an oven for 24 h. The resulting solution was slowly cooled to room temperature. The orange transparent single crystals of the title compound were obtained in 46.45% yield.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å, and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

In the structural investigations of compounds of CuI halide, such as bromide (Yang, 2009; Wang, 2008; Näther & Greve, 2001), has been found. A four coordination polymer, resulted from the hydrothermal treatment of CuBr with 1,2-bis(4-pyridyl)ethene.

As Fig. 1, the symmetric unit consists of one copper(I) ion, one bromide ligand and half 1,2-bis(4-pyridyl)ethene ligand, all on general positions. The CuI atom is tetrahedral and coordinated by three µ3-bridging Br atoms and the each bromide bridges the other two Cu cations, while the N atoms of 1,2-bis(4-pyridyl)ethene ligand coordinate the other Cu cations, forming the three-dimensional polymeric architecture (Fig. 2).

The polymer frameworks has four-membered Cu—Br—Cu—Br units that form the step of a stair (Healy et al., 1989; Jasinski et al., 1985) and 1,2-bis(4-pyridyl)ethene ligand across those stairs, shown as Fig. 2. Cu···Cu distances are between 2.8852 (16)~2.9332 (16) Å and Cu—Br—Cu angles are 71.21 (4)~102.99 (4), respectively.

For related structures, see: Yang (2009); Wang (2008); Näther & Greve (2001). For stair-like structures, see: Healy et al. (1989); Jasinski et al. (1985).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The coordination environment around the Cu(I) cation with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A diagram of the unit cell packing showing two-dimensional sheet structure.
Poly[[µ2-1,2-bis(4-pyridyl)ethene-κ2N:N']-di-µ3-bromido- dicopper(I)] top
Crystal data top
[Cu2Br2(C12H10N2)]F(000) = 448
Mr = 234.56Dx = 2.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2187 reflections
a = 3.9066 (3) Åθ = 2.5–25.0°
b = 15.1047 (13) ŵ = 9.36 mm1
c = 11.1050 (9) ÅT = 294 K
β = 95.149 (2)°Columnar, orange
V = 652.64 (9) Å30.40 × 0.10 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1162 independent reflections
Radiation source: fine-focus sealed tube1083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 9 pixels mm-1θmax = 25.1°, θmin = 2.3°
CCD rotation images, thick slices scansh = 44
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1717
Tmin = 0.487, Tmax = 0.938l = 913
3454 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.30 w = 1/[σ2(Fo2) + (0.022P)2 + 3.3443P]
where P = (Fo2 + 2Fc2)/3
1162 reflections(Δ/σ)max = 0.010
82 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Cu2Br2(C12H10N2)]V = 652.64 (9) Å3
Mr = 234.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9066 (3) ŵ = 9.36 mm1
b = 15.1047 (13) ÅT = 294 K
c = 11.1050 (9) Å0.40 × 0.10 × 0.05 mm
β = 95.149 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1162 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1083 reflections with I > 2σ(I)
Tmin = 0.487, Tmax = 0.938Rint = 0.037
3454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.30Δρmax = 0.61 e Å3
1162 reflectionsΔρmin = 0.91 e Å3
82 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.19561 (17)0.49650 (5)0.33505 (6)0.0347 (2)
Cu10.2671 (3)0.56165 (6)0.54908 (9)0.0473 (3)
N10.3103 (14)0.6931 (3)0.5275 (5)0.0343 (17)
C10.1767 (19)0.7337 (4)0.4255 (6)0.039 (2)
C20.2046 (19)0.8230 (5)0.4055 (7)0.041 (2)
C30.3818 (18)0.8766 (4)0.4912 (6)0.034 (2)
C40.520 (2)0.8355 (5)0.5972 (6)0.040 (2)
C50.4799 (18)0.7450 (4)0.6095 (6)0.037 (2)
C60.4128 (19)0.9711 (4)0.4647 (7)0.036 (2)
H10.059700.699400.365600.0470*
H20.104200.847700.334100.0490*
H40.636400.868400.658600.0480*
H50.578500.718600.679900.0440*
H60.301200.992000.392800.0440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0345 (4)0.0376 (4)0.0312 (4)0.0036 (3)0.0006 (3)0.0001 (3)
Cu10.0589 (6)0.0302 (5)0.0520 (6)0.0054 (4)0.0000 (4)0.0062 (4)
N10.041 (3)0.023 (3)0.039 (3)0.001 (2)0.005 (3)0.000 (2)
C10.048 (4)0.029 (4)0.038 (4)0.002 (3)0.006 (3)0.002 (3)
C20.049 (4)0.036 (4)0.035 (4)0.002 (3)0.006 (3)0.007 (3)
C30.038 (4)0.023 (3)0.041 (4)0.003 (3)0.011 (3)0.006 (3)
C40.050 (4)0.035 (4)0.035 (4)0.006 (3)0.001 (3)0.006 (3)
C50.043 (4)0.029 (3)0.037 (4)0.004 (3)0.003 (3)0.001 (3)
C60.043 (4)0.029 (4)0.036 (4)0.002 (3)0.001 (3)0.000 (3)
Geometric parameters (Å, º) top
Br—Cu12.5645 (12)C3—C61.465 (9)
Br—Cu1i2.4723 (13)C4—C51.384 (10)
Br—Cu1ii2.5195 (13)C6—C6iii1.321 (10)
N1—Cu12.009 (5)C1—H10.9300
N1—C11.351 (8)C2—H20.9300
N1—C51.332 (8)C4—H40.9300
C1—C21.373 (10)C5—H50.9300
C2—C31.386 (10)C6—H60.9300
C3—C41.396 (10)
Br···C13.724 (6)C4···H6iii2.7000
Br···H13.1300C6···H4iii2.7800
Br···H2iv3.0900H1···Br3.1300
Br···H6iv3.0500H2···H62.3800
C1···C5v3.551 (10)H2···Brix3.0900
C2···C3v3.527 (10)H4···C6iii2.7800
C2···C4v3.570 (11)H4···H6iii2.2000
C3···C2vi3.527 (10)H5···C2x3.0800
C4···C2vi3.570 (11)H6···H22.3800
C5···C1vi3.551 (10)H6···Brix3.0500
C6···C6vii3.498 (10)H6···C4iii2.7000
C2···H5viii3.0800H6···H4iii2.2000
Cu1—Br—Cu1i71.21 (4)C2—C3—C6118.5 (6)
Cu1—Br—Cu1ii69.15 (4)C4—C3—C6124.8 (6)
Cu1i—Br—Cu1ii102.99 (4)C3—C4—C5118.9 (6)
Br—Cu1—N1105.79 (16)N1—C5—C4124.6 (6)
Br—Cu1—Bri108.79 (4)C3—C6—C6iii124.9 (7)
Br—Cu1—Brii110.86 (4)N1—C1—H1118.00
Bri—Cu1—N1119.11 (16)C2—C1—H1118.00
Brii—Cu1—N1109.30 (16)C1—C2—H2120.00
Bri—Cu1—Brii102.99 (4)C3—C2—H2120.00
Cu1—N1—C1121.2 (4)C3—C4—H4121.00
Cu1—N1—C5122.8 (4)C5—C4—H4121.00
C1—N1—C5115.9 (5)N1—C5—H5118.00
N1—C1—C2123.5 (6)C4—C5—H5118.00
C1—C2—C3120.3 (7)C3—C6—H6118.00
C2—C3—C4116.8 (6)C6iii—C6—H6118.00
Cu1i—Br—Cu1—N1129.06 (17)Bri—Cu1—N1—C197.7 (5)
Cu1ii—Br—Cu1—N1118.37 (17)Cu1—N1—C1—C2178.8 (6)
Cu1i—Br—Cu1—Bri0.00 (4)C5—N1—C1—C21.0 (10)
Cu1ii—Br—Cu1—Bri112.57 (5)Cu1—N1—C5—C4179.0 (6)
Cu1i—Br—Cu1—Brii112.57 (5)C1—N1—C5—C41.2 (10)
Cu1ii—Br—Cu1—Brii0.00 (4)N1—C1—C2—C31.1 (11)
Cu1i—Bri—Cu1—N1121.22 (19)C1—C2—C3—C41.3 (11)
Cu1ii—Brii—Cu1—Br0.00 (4)C1—C2—C3—C6178.4 (7)
Cu1ii—Brii—Cu1—N1116.22 (17)C2—C3—C4—C51.4 (10)
Cu1i—Bri—Cu1—Br0.00 (5)C6—C3—C4—C5178.3 (7)
Brii—Cu1—N1—C1144.4 (5)C2—C3—C6—C6iii176.7 (7)
Brii—Cu1—N1—C533.2 (6)C4—C3—C6—C6iii3.0 (12)
Bri—Cu1—N1—C584.7 (5)C3—C4—C5—N11.5 (11)
Br—Cu1—N1—C125.0 (5)C3—C6—C6iii—C3iii180.0 (7)
Br—Cu1—N1—C5152.6 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y+2, z+1; (viii) x, y+3/2, z1/2; (ix) x, y+1/2, z+1/2; (x) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2Br2(C12H10N2)]
Mr234.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)3.9066 (3), 15.1047 (13), 11.1050 (9)
β (°) 95.149 (2)
V3)652.64 (9)
Z4
Radiation typeMo Kα
µ (mm1)9.36
Crystal size (mm)0.40 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.487, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
3454, 1162, 1083
Rint0.037
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.096, 1.30
No. of reflections1162
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.91

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Br—Cu12.5645 (12)Br—Cu1ii2.5195 (13)
Br—Cu1i2.4723 (13)N1—Cu12.009 (5)
Br—Cu1—N1105.79 (16)Bri—Cu1—N1119.11 (16)
Br—Cu1—Bri108.79 (4)Brii—Cu1—N1109.30 (16)
Br—Cu1—Brii110.86 (4)Bri—Cu1—Brii102.99 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationHealy, P. C., Kildea, J., Skelton, B. & White, A. (1989). Aust. J. Chem. 42, 79–82.  CSD CrossRef CAS Google Scholar
First citationJasinski, J. P., Roth, N. P. & Holt, E. M. (1985). Inorg. Chim. Acta, 97, 91–97.  CSD CrossRef CAS Web of Science Google Scholar
First citationNäther, C. & Greve, J. (2001). Acta Cryst. C57, 377–378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. (2008). Acta Cryst. E64, m759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, M.-H. (2009). Acta Cryst. C65, m59–m61.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds