metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­kis­(μ2-pyrazine N,N′-dioxide-κ2O:O′)erbium(III)] tris­­(perchlorate)]

aAllegheny College, 520 North Main St., Meadville, PA 16335, USA
*Correspondence e-mail: jknaust@allegheny.edu

(Received 3 August 2010; accepted 9 August 2010; online 18 August 2010)

The title three-dimensional coordination network, {[Er(C4H4N2O2)4](ClO4)3}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-anti­prismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001) and (110) and inter­act with the coordination network through C—H⋯O hydrogen bonds.

Related literature

For the isostructural La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks, see: Sun et al. (2004[Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73 89-95.]). For the isostructural Nd, Dy and Ho coordination networks, see: Quinn-Elmore et al. (2010a[Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1104-m1105.],b[Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1106-m1107.]); Buchner et al. (2010[Buchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010). Acta Cryst. E66, m1108-m1109.]), respectively. Detailed background to this study is described in the first article of this series by Quinn-Elmore et al. (2010a[Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1104-m1105.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(C4H4N2O2)4](ClO4)3

  • Mr = 913.98

  • Tetragonal, I 41 /a c d

  • a = 15.1777 (4) Å

  • c = 22.5094 (12) Å

  • V = 5185.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.66 mm−1

  • T = 100 K

  • 0.44 × 0.44 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 1.000

  • 27002 measured reflections

  • 1997 independent reflections

  • 1775 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 0.98

  • 1997 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 3.41 e Å−3

  • Δρmin = −1.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.50 3.266 (3) 138
C2—H2⋯O5 0.95 2.39 3.147 (5) 137
C3—H3⋯O1 0.95 2.60 3.321 (3) 133
C3—H3⋯O3 0.95 2.45 3.219 (3) 138
C4—H4⋯O3ii 0.95 2.35 3.218 (3) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-y+{\script{3\over 4}}, x-{\script{1\over 4}}, -z+{\script{1\over 4}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The description of the structure of the title compound is part of a series of consecutive papers on three-dimensional coordination networks of the type {[Ln(C4H4N2O2)4](ClO4)3}n, with Ln = Nd (Quinn-Elmore et al. 2010a), Dy (Quinn-Elmore et al. 2010b) and Ho (Buchner et al. 2010), Er (this publication), respectively. All four compounds are also isostructural to the previously reported La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks (Sun et al. 2004). The background to this study is given in ther first article of this series by Quinn-Elmore et al. (2010a).

Related literature top

For the isostructural La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks, see: Sun et al. (2004). For the isostructural Nd, Dy and Ho coordination networks, see: Quinn-Elmore et al. (2010a,b); Buchner et al. (2010), respectively. Detailed background to this study is described in the first article of this series by Quinn-Elmore et al. (2010a).

Experimental top

Pyrazine N,N'-dioxide (0.025 g, 0.223 mmol) was dissolved in deionized water (1.5 ml) and methanol (1.5 ml). An aqueous solution of Er(ClO4)3 (0.650 ml of a 0.0860 M solution, 0.0558 mmol) was diluted with methanol (0.350 ml) and CH2Cl2 (2.5 ml). The pyrazine N,N'-dioxide solution was layered over the Er(ClO4)3 solution, and the two solutions were allowed to slowly mix. Yellow block-like crystals formed upon the slow evaporation of the resultant solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The description of the structure of the title compound is part of a series of consecutive papers on three-dimensional coordination networks of the type {[Ln(C4H4N2O2)4](ClO4)3}n, with Ln = Nd (Quinn-Elmore et al. 2010a), Dy (Quinn-Elmore et al. 2010b) and Ho (Buchner et al. 2010), Er (this publication), respectively. All four compounds are also isostructural to the previously reported La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks (Sun et al. 2004). The background to this study is given in ther first article of this series by Quinn-Elmore et al. (2010a).

For the isostructural La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks, see: Sun et al. (2004). For the isostructural Nd, Dy and Ho coordination networks, see: Quinn-Elmore et al. (2010a,b); Buchner et al. (2010), respectively. Detailed background to this study is described in the first article of this series by Quinn-Elmore et al. (2010a).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The coordination environment of the Er+3 cation in title compound with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted for clarity. Symmetry codes: (i) y + 1/4, x - 1/4, -z + 3/4; (ii) -y + 3/4, -x + 3/4, -z + 3/4; (iii) -x + 1, -y + 1/2, z; (iv) -y + 3/4, x - 1/4, -z + 1/4; (v) y + 1/4, -x + 3/4, -z + 1/4; (vi) y + 3/4, x - 3/4, -z + 1/4; (vii) -x + 3/2, -y + 1/2, -z + 1/2; (viii) x, -y + 1, -z + 1/2.
Poly[[tetrakis(µ2-pyrazine N,N'-dioxide-κ2O:O')erbium(III)] tris(perchlorate)] top
Crystal data top
[Er(C4H4N2O2)4](ClO4)3Dx = 2.342 Mg m3
Mr = 913.98Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/acdCell parameters from 13828 reflections
Hall symbol: -I 4bd 2cθ = 2.6–30.6°
a = 15.1777 (4) ŵ = 3.66 mm1
c = 22.5094 (12) ÅT = 100 K
V = 5185.3 (3) Å3Block, yellow
Z = 80.44 × 0.44 × 0.18 mm
F(000) = 3576
Data collection top
Bruker SMART APEX CCD
diffractometer
1997 independent reflections
Radiation source: fine-focus sealed tube1775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 30.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2121
Tmin = 0.725, Tmax = 1.000k = 2121
27002 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0554P)2 + 37.1849P]
where P = (Fo2 + 2Fc2)/3
1997 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 3.41 e Å3
0 restraintsΔρmin = 1.62 e Å3
Crystal data top
[Er(C4H4N2O2)4](ClO4)3Z = 8
Mr = 913.98Mo Kα radiation
Tetragonal, I41/acdµ = 3.66 mm1
a = 15.1777 (4) ÅT = 100 K
c = 22.5094 (12) Å0.44 × 0.44 × 0.18 mm
V = 5185.3 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
1997 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1775 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 1.000Rint = 0.024
27002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0554P)2 + 37.1849P]
where P = (Fo2 + 2Fc2)/3
1997 reflectionsΔρmax = 3.41 e Å3
110 parametersΔρmin = 1.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.50000.25000.37500.00421 (10)
Cl10.50000.25000.12500.0105 (3)
Cl20.72764 (5)0.02236 (5)0.12500.0251 (2)
O10.59052 (11)0.21840 (12)0.29594 (8)0.0150 (3)
O20.53202 (12)0.39323 (11)0.34440 (8)0.0146 (3)
O30.57685 (14)0.24307 (14)0.16232 (9)0.0230 (4)
O40.6459 (3)0.0156 (4)0.1512 (3)0.116 (2)
O50.7922 (3)0.0078 (3)0.1690 (3)0.0919 (17)
N10.66916 (14)0.23390 (14)0.27491 (9)0.0130 (4)
N20.52617 (14)0.44427 (13)0.29795 (9)0.0120 (4)
C10.70908 (16)0.17164 (16)0.24123 (10)0.0142 (4)
H10.68100.11640.23510.017*
C20.78967 (15)0.18759 (16)0.21586 (11)0.0140 (4)
H20.81680.14380.19180.017*
C30.52531 (17)0.41139 (15)0.24210 (10)0.0138 (4)
H30.52490.34940.23610.017*
C40.52504 (17)0.46718 (15)0.19415 (10)0.0142 (4)
H40.52400.44360.15510.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.00435 (11)0.00435 (11)0.00392 (14)0.00025 (5)0.0000.000
Cl10.0123 (5)0.0123 (5)0.0067 (7)0.0000.0000.000
Cl20.0235 (3)0.0235 (3)0.0283 (5)0.0089 (4)0.0048 (2)0.0048 (2)
O10.0094 (7)0.0220 (9)0.0137 (7)0.0028 (6)0.0040 (6)0.0033 (7)
O20.0220 (9)0.0114 (7)0.0105 (7)0.0015 (6)0.0032 (7)0.0043 (6)
O30.0168 (9)0.0376 (12)0.0147 (9)0.0044 (7)0.0043 (8)0.0022 (7)
O40.052 (3)0.120 (4)0.175 (5)0.003 (3)0.075 (3)0.000 (4)
O50.077 (3)0.070 (3)0.129 (5)0.002 (2)0.055 (3)0.029 (3)
N10.0110 (9)0.0165 (9)0.0113 (9)0.0011 (7)0.0013 (7)0.0005 (8)
N20.0136 (9)0.0107 (8)0.0117 (9)0.0001 (7)0.0016 (7)0.0023 (7)
C10.0131 (10)0.0149 (10)0.0145 (10)0.0009 (8)0.0016 (8)0.0019 (8)
C20.0122 (10)0.0169 (11)0.0128 (10)0.0003 (8)0.0007 (8)0.0022 (8)
C30.0183 (11)0.0105 (10)0.0125 (10)0.0021 (8)0.0015 (9)0.0007 (8)
C40.0193 (11)0.0115 (10)0.0118 (10)0.0002 (8)0.0002 (9)0.0002 (8)
Geometric parameters (Å, º) top
Er1—O1i2.2989 (17)Cl2—O5vi1.410 (4)
Er1—O1ii2.2989 (17)O1—N11.305 (3)
Er1—O12.2989 (17)O2—N21.304 (2)
Er1—O1iii2.2989 (17)N1—C11.354 (3)
Er1—O2i2.3316 (17)N1—C2vii1.361 (3)
Er1—O2ii2.3316 (17)N2—C31.353 (3)
Er1—O22.3316 (17)N2—C4viii1.356 (3)
Er1—O2iii2.3316 (17)C1—C21.371 (3)
Cl1—O31.441 (2)C1—H10.9500
Cl1—O3iv1.441 (2)C2—N1vii1.361 (3)
Cl1—O3iii1.441 (2)C2—H20.9500
Cl1—O3v1.441 (2)C3—C41.372 (3)
Cl2—O4vi1.377 (4)C3—H30.9500
Cl2—O41.377 (4)C4—N2viii1.356 (3)
Cl2—O51.410 (4)C4—H40.9500
O1i—Er1—O1ii78.54 (9)O3iv—Cl1—O3iii109.86 (9)
O1i—Er1—O1148.06 (9)O3—Cl1—O3v109.86 (9)
O1ii—Er1—O1110.48 (9)O3iv—Cl1—O3v108.69 (17)
O1i—Er1—O1iii110.48 (9)O3iii—Cl1—O3v109.86 (9)
O1ii—Er1—O1iii148.06 (9)O4vi—Cl2—O4108.5 (5)
O1—Er1—O1iii78.55 (9)O4vi—Cl2—O5113.0 (3)
O1i—Er1—O2i80.86 (7)O4—Cl2—O5108.3 (4)
O1ii—Er1—O2i72.63 (6)O4vi—Cl2—O5vi108.3 (4)
O1—Er1—O2i73.44 (6)O4—Cl2—O5vi113.0 (3)
O1iii—Er1—O2i137.94 (6)O5—Cl2—O5vi105.9 (5)
O1i—Er1—O2ii72.63 (6)N1—O1—Er1142.15 (15)
O1ii—Er1—O2ii80.86 (7)N2—O2—Er1140.93 (15)
O1—Er1—O2ii137.94 (6)O1—N1—C1119.1 (2)
O1iii—Er1—O2ii73.44 (6)O1—N1—C2vii121.5 (2)
O2i—Er1—O2ii145.63 (8)C1—N1—C2vii119.4 (2)
O1i—Er1—O273.44 (6)O2—N2—C3121.8 (2)
O1ii—Er1—O2137.94 (6)O2—N2—C4viii119.0 (2)
O1—Er1—O280.86 (7)C3—N2—C4viii119.2 (2)
O1iii—Er1—O272.63 (6)N1—C1—C2120.6 (2)
O2i—Er1—O272.46 (9)N1—C1—H1119.7
O2ii—Er1—O2118.42 (9)C2—C1—H1119.7
O1i—Er1—O2iii137.94 (6)N1vii—C2—C1120.0 (2)
O1ii—Er1—O2iii73.44 (6)N1vii—C2—H2120.0
O1—Er1—O2iii72.63 (6)C1—C2—H2120.0
O1iii—Er1—O2iii80.87 (7)N2—C3—C4120.2 (2)
O2i—Er1—O2iii118.42 (9)N2—C3—H3119.9
O2ii—Er1—O2iii72.46 (9)C4—C3—H3119.9
O2—Er1—O2iii145.64 (8)N2viii—C4—C3120.6 (2)
O3—Cl1—O3iv109.86 (9)N2viii—C4—H4119.7
O3—Cl1—O3iii108.69 (17)C3—C4—H4119.7
Symmetry codes: (i) y+1/4, x1/4, z+3/4; (ii) y+3/4, x+3/4, z+3/4; (iii) x+1, y+1/2, z; (iv) y+3/4, x1/4, z+1/4; (v) y+1/4, x+3/4, z+1/4; (vi) y+3/4, x3/4, z+1/4; (vii) x+3/2, y+1/2, z+1/2; (viii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2vii0.952.503.266 (3)138
C2—H2···O50.952.393.147 (5)137
C3—H3···O10.952.603.321 (3)133
C3—H3···O30.952.453.219 (3)138
C4—H4···O3iv0.952.353.218 (3)152
Symmetry codes: (iv) y+3/4, x1/4, z+1/4; (vii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Er(C4H4N2O2)4](ClO4)3
Mr913.98
Crystal system, space groupTetragonal, I41/acd
Temperature (K)100
a, c (Å)15.1777 (4), 22.5094 (12)
V3)5185.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)3.66
Crystal size (mm)0.44 × 0.44 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.725, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27002, 1997, 1775
Rint0.024
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 0.98
No. of reflections1997
No. of parameters110
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0554P)2 + 37.1849P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.41, 1.62

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.503.266 (3)137.8
C2—H2···O50.952.393.147 (5)136.8
C3—H3···O10.952.603.321 (3)132.8
C3—H3···O30.952.453.219 (3)138.4
C4—H4···O3ii0.952.353.218 (3)152.3
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) y+3/4, x1/4, z+1/4.
 

Acknowledgements

The authors are thankful to Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would like to acknowledge Youngstown State University and the STaRBURSTT CyberInstrumentation Consortium for assistance with the crystallography.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010). Acta Cryst. E66, m1108–m1109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1104–m1105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1106–m1107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73 89–95.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds