metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2,4-di­bromo-6-(n-propyl­imino­methyl)phenolato-κ2N,O]cobalt(II)

aCollege of Health Science, Wuhan Institute of Physical Education, Wuhan 430079, People's Republic of China
*Correspondence e-mail: lichunyan2009@yahoo.com.cn

(Received 12 July 2010; accepted 10 August 2010; online 18 August 2010)

In the title complex, [Co(C10H10Br2NO)2], the CoII atom lies on a twofold rotation axis, the N2O2 units having distorted tetra­hedral coordination environments comprising two bidentate chelate 2,4-dibromo-6-(n-propyl­imino­meth­yl)phenolate Schiff base ligands [Co—N = 1.989 (3) Å, Co—O = 1.924 (2) Å and O/N—Co—O/N = 94.53 (10)–125.40 (15)°]. In the crystal structure, the mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds [3.334 (5) Å] and there are also short inversion-related intermolecular Br⋯Br contacts [3.4263 (6) Å]

Related literature

For related compounds, see: Bermejo et al. (1996[Bermejo, M. R., Castineiras, A., Garcia-Monteagudo, J. C., Rey, M., Sousa, A., Watkinson, M., McAuliffe, C. A., Pritchard, R. G. & Beddoes, R. L. (1996). J. Chem. Soc. Dalton Trans. pp. 2935-2944.]); Chen et al. (2007[Chen, X.-M., Zhang, S.-H. & Yang, Y. (2007). Acta Cryst. E63, m1317-m1318.]); Li & Wang (2007[Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m1791.]); Li et al. (2008[Li, S., Wang, S.-B., Tang, K. & Ma, Y.-F. (2008). Acta Cryst. E64, m823.]); Maneiro et al. (2001[Maneiro, M., Bermejo, M. R., Fondo, M., Gonzalez, A. M., Sanmartin, J., Garcia-Monteagudo, J. C., Pritchard, R. G. & Tyryshkin, A. M. (2001). Polyhedron, 20, 711-719.]); Qiu et al. (2007[Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem. 633, 1480-1484.]); Yuan et al. (2007[Yuan, W.-B., Xu, H.-W., Li, J.-X., Liu, M. & Zhang, Q. (2007). Acta Cryst. E63, m1702.]). For standard bond-length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H10Br2NO)2]

  • Mr = 698.91

  • Monoclinic, C 2/c

  • a = 24.3684 (10) Å

  • b = 4.8555 (2) Å

  • c = 21.8132 (10) Å

  • β = 115.523 (4)°

  • V = 2329.08 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.62 mm−1

  • T = 296 K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.097, Tmax = 0.218

  • 6076 measured reflections

  • 2270 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.065

  • S = 1.00

  • 2270 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Lewis base adducts of the 3,5-dibromosalicylidene compounds derived from the condensation of 3,5-dibromosalicylaldehyde with various primary amines are of interest, forming complexes with a large number of transition metals (Chen et al., 2007; Qiu et al., 2007; Maneiro et al., 2001; Bermejo et al., 1996). Recently, mononuclear zinc(II) and nickel(II) compounds of Schiff base ligands derived from the condensation of 3,5-dibromosalicylaldehyde with cyclopropylamine have been structurally characterized (Li & Wang, 2007; Yuan et al., 2007). As an extension of this work, the crystal structure of the title CoII complex, [C20H20Br4CoN2O2] (I), is reported here.

In (I), the CoII atoms have distorted tetrahedral coordination environments with two bidentate Schiff base ligands, derived from the condensation of 3,5-dibromosalicylaldehyde and n-propylamine, acting as chelates through their phenolate O and azomethine N atoms [Co—N 1.989 (3) Å; Co—O 1.924 (2) Å; bond-angle range 94.53 (10)–125.40 (15)°] (Fig. 1). The Co atoms lie on two-fold rotation axes. The C7N1 bond length of 1.274 (4) Å is somewhat shorter than 1.284 (2) Å observed in the previously reported compound of a Schiff base ligand derived from the condensation of salicylaldehyde with n-propylamine (Li et al., 2008). The angle between the two O1—Co1—N1 planes of the molecule is equal to 84.13°. All bond lengths are within normal ranges (Allen et al., 1987). In the crystal structure, the molecules are linked via weak intermolecular C—H···O hydrogen bonds and there are also short inversion-related inermolecular Br···Br contacts [3.4263 (6) Å] (Fig. 2).

Related literature top

For related compounds, see: Bermejo et al. (1996); Chen et al. (2007); Li & Wang (2007); Li et al. (2008); Maneiro et al. (2001); Qiu et al. (2007); Yuan et al. (2007). For standard bond-distance values, see: Allen et al. (1987).

Experimental top

3,5-Dibromosalicylaldehyde (560 mg, 2 mmol) and n-propylamine (118 mg, 2 mmol) were dissolved in methanol (25 ml). The mixture was stirred for 30 min to give an orange solution, which was added to a methanol solution (15 ml) of Co(NO3)2.6H2O (280 mg, 1 mmol). The mixture was stirred for another 20 min at room temperature to give a red solution and then filtered. The filtrate was kept in air for 5 d, forming red blocky crystals. The crystals were isolated, washed three times with distilled water and dried in a vacuum desiccator containing anhydrous CaCl2 (yield 68%). Analysis calculated for C20H20Br4CoN2O2: C 34.37, H 2.88, N 4.01%; found: C 34.17, H 2.90, N 3.99%. IR (KBr, cm-1): 3447, 3062, 2966, 2877, 2359, 1619, 1577, 1504, 1434, 1407, 1307, 1212, 1161, 1095, 1040, 865, 838, 749, 705, 604, 466.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl groups).

Structure description top

The Lewis base adducts of the 3,5-dibromosalicylidene compounds derived from the condensation of 3,5-dibromosalicylaldehyde with various primary amines are of interest, forming complexes with a large number of transition metals (Chen et al., 2007; Qiu et al., 2007; Maneiro et al., 2001; Bermejo et al., 1996). Recently, mononuclear zinc(II) and nickel(II) compounds of Schiff base ligands derived from the condensation of 3,5-dibromosalicylaldehyde with cyclopropylamine have been structurally characterized (Li & Wang, 2007; Yuan et al., 2007). As an extension of this work, the crystal structure of the title CoII complex, [C20H20Br4CoN2O2] (I), is reported here.

In (I), the CoII atoms have distorted tetrahedral coordination environments with two bidentate Schiff base ligands, derived from the condensation of 3,5-dibromosalicylaldehyde and n-propylamine, acting as chelates through their phenolate O and azomethine N atoms [Co—N 1.989 (3) Å; Co—O 1.924 (2) Å; bond-angle range 94.53 (10)–125.40 (15)°] (Fig. 1). The Co atoms lie on two-fold rotation axes. The C7N1 bond length of 1.274 (4) Å is somewhat shorter than 1.284 (2) Å observed in the previously reported compound of a Schiff base ligand derived from the condensation of salicylaldehyde with n-propylamine (Li et al., 2008). The angle between the two O1—Co1—N1 planes of the molecule is equal to 84.13°. All bond lengths are within normal ranges (Allen et al., 1987). In the crystal structure, the molecules are linked via weak intermolecular C—H···O hydrogen bonds and there are also short inversion-related inermolecular Br···Br contacts [3.4263 (6) Å] (Fig. 2).

For related compounds, see: Bermejo et al. (1996); Chen et al. (2007); Li & Wang (2007); Li et al. (2008); Maneiro et al. (2001); Qiu et al. (2007); Yuan et al. (2007). For standard bond-distance values, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme of the title compound (I), showing 30% probability displacement ellipsoids. The complex has two-fold rotational symmetry, the atoms labeled with the suffix A are related to the primary atoms by the symmetry code -x, y, -z + 3/2.
[Figure 2] Fig. 2. The crystal packing of the title compound (I) viewed along the b axis, linked via intermolecular C—H···O hydrogen bonds (dashed lines).
Bis[2,4-dibromo-6-(n-propyliminomethyl)phenolato- κ2N,O]cobalt(II) top
Crystal data top
[Co(C10H10Br2NO)2]F(000) = 1348
Mr = 698.91Dx = 1.993 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1806 reflections
a = 24.3684 (10) Åθ = 3.3–25.5°
b = 4.8555 (2) ŵ = 7.62 mm1
c = 21.8132 (10) ÅT = 296 K
β = 115.523 (4)°Block, red
V = 2329.08 (19) Å30.32 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2270 independent reflections
Radiation source: fine-focus sealed tube1657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2921
Tmin = 0.097, Tmax = 0.218k = 55
6076 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.88P]
where P = (Fo2 + 2Fc2)/3
2270 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Co(C10H10Br2NO)2]V = 2329.08 (19) Å3
Mr = 698.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.3684 (10) ŵ = 7.62 mm1
b = 4.8555 (2) ÅT = 296 K
c = 21.8132 (10) Å0.32 × 0.22 × 0.20 mm
β = 115.523 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2270 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1657 reflections with I > 2σ(I)
Tmin = 0.097, Tmax = 0.218Rint = 0.036
6076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
2270 reflectionsΔρmin = 0.50 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.31955 (14)0.75000.03770 (18)
Br10.028614 (18)0.79002 (8)0.569909 (19)0.05211 (14)
Br20.232643 (17)0.11525 (10)0.62503 (2)0.06655 (17)
N10.07574 (11)0.1053 (6)0.80081 (13)0.0385 (7)
O10.03028 (9)0.5013 (5)0.69236 (11)0.0413 (6)
C10.11919 (14)0.2181 (7)0.72164 (16)0.0369 (8)
C20.07618 (13)0.4180 (7)0.68171 (16)0.0341 (8)
C30.08482 (14)0.5258 (7)0.62579 (16)0.0368 (8)
C40.13048 (15)0.4419 (8)0.60975 (18)0.0440 (9)
H40.13430.51640.57250.053*
C50.17107 (15)0.2444 (8)0.64965 (19)0.0437 (9)
C60.16661 (15)0.1351 (8)0.70498 (18)0.0468 (9)
H60.19490.00560.73180.056*
C70.11686 (14)0.0829 (7)0.77979 (17)0.0415 (9)
H70.14910.03360.80460.050*
C80.08417 (17)0.0483 (8)0.86238 (18)0.0516 (10)
H8A0.11480.18940.87120.062*
H8B0.04640.13850.85520.062*
C90.10364 (16)0.1417 (9)0.92354 (18)0.0559 (11)
H9A0.07500.29310.91270.067*
H9B0.10230.04080.96120.067*
C100.16709 (18)0.2569 (10)0.9451 (2)0.0746 (14)
H10A0.19580.10810.95670.112*
H10B0.17720.37440.98380.112*
H10C0.16850.36100.90830.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0308 (3)0.0523 (4)0.0343 (4)0.0000.0181 (3)0.000
Br10.0656 (3)0.0533 (3)0.0443 (2)0.0123 (2)0.03017 (19)0.01239 (19)
Br20.0498 (2)0.0945 (4)0.0726 (3)0.0031 (2)0.0427 (2)0.0139 (3)
N10.0333 (15)0.0490 (19)0.0339 (16)0.0022 (14)0.0150 (12)0.0031 (14)
O10.0377 (12)0.0517 (16)0.0424 (13)0.0080 (11)0.0247 (11)0.0090 (12)
C10.0351 (18)0.044 (2)0.0357 (19)0.0021 (16)0.0191 (15)0.0042 (16)
C20.0324 (17)0.038 (2)0.0349 (19)0.0042 (16)0.0176 (15)0.0035 (16)
C30.0448 (19)0.035 (2)0.0363 (19)0.0020 (16)0.0230 (16)0.0034 (16)
C40.050 (2)0.050 (2)0.042 (2)0.0075 (19)0.0297 (18)0.0053 (18)
C50.0372 (19)0.056 (3)0.049 (2)0.0048 (18)0.0285 (17)0.0104 (19)
C60.0334 (19)0.061 (3)0.045 (2)0.0065 (18)0.0156 (16)0.0001 (19)
C70.0323 (18)0.049 (2)0.042 (2)0.0064 (16)0.0147 (16)0.0080 (17)
C80.050 (2)0.060 (3)0.047 (2)0.003 (2)0.0231 (18)0.015 (2)
C90.046 (2)0.088 (3)0.037 (2)0.006 (2)0.0215 (17)0.010 (2)
C100.053 (3)0.112 (4)0.051 (3)0.016 (3)0.015 (2)0.002 (3)
Geometric parameters (Å, º) top
Co1—O1i1.924 (2)C4—C51.383 (5)
Co1—O11.924 (2)C4—H40.9300
Co1—N1i1.989 (3)C5—C61.365 (5)
Co1—N11.989 (3)C6—H60.9300
Br1—C31.889 (3)C7—H70.9300
Br2—C51.905 (3)C8—C91.520 (5)
N1—C71.274 (4)C8—H8A0.9700
N1—C81.471 (4)C8—H8B0.9700
O1—C21.301 (3)C9—C101.516 (5)
C1—C61.411 (5)C9—H9A0.9700
C1—C21.419 (4)C9—H9B0.9700
C1—C71.451 (4)C10—H10A0.9600
C2—C31.424 (4)C10—H10B0.9600
C3—C41.365 (4)C10—H10C0.9600
O1i—Co1—O1125.40 (15)C5—C6—C1120.2 (3)
O1i—Co1—N1i94.53 (10)C5—C6—H6119.9
O1—Co1—N1i113.63 (10)C1—C6—H6119.9
O1i—Co1—N1113.64 (10)N1—C7—C1127.5 (3)
O1—Co1—N194.53 (10)N1—C7—H7116.2
N1i—Co1—N1116.90 (16)C1—C7—H7116.2
C7—N1—C8117.6 (3)N1—C8—C9111.2 (3)
C7—N1—Co1122.0 (2)N1—C8—H8A109.4
C8—N1—Co1120.3 (2)C9—C8—H8A109.4
C2—O1—Co1125.1 (2)N1—C8—H8B109.4
C6—C1—C2120.5 (3)C9—C8—H8B109.4
C6—C1—C7116.1 (3)H8A—C8—H8B108.0
C2—C1—C7123.3 (3)C10—C9—C8112.8 (3)
O1—C2—C1124.6 (3)C10—C9—H9A109.0
O1—C2—C3119.6 (3)C8—C9—H9A109.0
C1—C2—C3115.8 (3)C10—C9—H9B109.0
C4—C3—C2123.2 (3)C8—C9—H9B109.0
C4—C3—Br1118.8 (3)H9A—C9—H9B107.8
C2—C3—Br1117.9 (2)C9—C10—H10A109.5
C3—C4—C5119.1 (3)C9—C10—H10B109.5
C3—C4—H4120.4H10A—C10—H10B109.5
C5—C4—H4120.4C9—C10—H10C109.5
C6—C5—C4121.2 (3)H10A—C10—H10C109.5
C6—C5—Br2119.6 (3)H10B—C10—H10C109.5
C4—C5—Br2119.2 (3)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C10H10Br2NO)2]
Mr698.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)24.3684 (10), 4.8555 (2), 21.8132 (10)
β (°) 115.523 (4)
V3)2329.08 (19)
Z4
Radiation typeMo Kα
µ (mm1)7.62
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.097, 0.218
No. of measured, independent and
observed [I > 2σ(I)] reflections
6076, 2270, 1657
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.065, 1.00
No. of reflections2270
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.50

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Education Office of Hubei Province (grant No. D20104104).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBermejo, M. R., Castineiras, A., Garcia-Monteagudo, J. C., Rey, M., Sousa, A., Watkinson, M., McAuliffe, C. A., Pritchard, R. G. & Beddoes, R. L. (1996). J. Chem. Soc. Dalton Trans. pp. 2935–2944.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M., Zhang, S.-H. & Yang, Y. (2007). Acta Cryst. E63, m1317–m1318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m1791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S., Wang, S.-B., Tang, K. & Ma, Y.-F. (2008). Acta Cryst. E64, m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManeiro, M., Bermejo, M. R., Fondo, M., Gonzalez, A. M., Sanmartin, J., Garcia-Monteagudo, J. C., Pritchard, R. G. & Tyryshkin, A. M. (2001). Polyhedron, 20, 711–719.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem. 633, 1480–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, W.-B., Xu, H.-W., Li, J.-X., Liu, M. & Zhang, Q. (2007). Acta Cryst. E63, m1702.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds