supplementary materials


bq2230 scheme

Acta Cryst. (2010). E66, m1288    [ doi:10.1107/S1600536810033477 ]

4-(4-Pyridyl)pyridinium pentaaqua(pyridazine-4,5-dicarboxylato)praseodymate(III)

Z.-Q. Zhang, X.-D. Xue, B.-X. Yao, X. Ji and H.-J. Jiang

Abstract top

In the title complex, (C10H9N2)[Pr(C6H2N2O4)2(H2O)5], the Pr atom is nine-coordinated by nine O atoms from two pyridazine-4,5-dicarboxylate anions and five water molecules. It is noteworthy that there is a protonated bipyridine molecule in the structure. Intermolecular O-H...O, O-H...N and N-H...N hydrogen bonds are present, resulting in a three-dimensional network.

Comment top

In the past few years, investigations on metal carboxylate coordination compounds have become of increasing interest (Escuer et al.(1997); Gryz et al. 2006). As part of our ongoing investigations in this field we report here the crystal structure of the title compound. In the crystal structure of (I) the Pr atom is coordinated by five oxygen atoms of five water molecules and four oxygen atoms from two pyridazine-4,5-dicarboxylate anions within a distorted orthorhombic coordination symmetry (Figure 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal structure contain additional bipyridine molecule that is linked to the complexes via O—H···N hydrogen bonding (Figure 2). The complexes are additionally connected by intermolecular O—H···O hydrogen bonding between the carboxyl O atoms and the water H atoms (Table 1 and Figure 2).

Related literature top

For general background to metal carboxylate coordination compounds, see: Escuer et al. (1997). For pyridazine dicarboxylic complexes, see: Gryz et al. (2006).

For related literature, see: Allen et al. (1987).

Experimental top

A mixture of pyridazine-4,5-dicarboxylic acid (84 mg, 0.5 mmol), NaOH (40 mg, 1.0 mmol), PrCl3.6H2O (177.7 mg, 0.5 mmol) and 4,4'-bipyridine (78 mg, 0.5 mmol) in warer (10 ml) was placed in a Teflon-lined stainless steel Parr bomb. The bomb was heated at 433 K for 4 d. The bomb was cooled naturally to room temperature, and yellow block crystals of (I) were obtained after several days. Analysis calculated for C22H23N6O13Pr: C 36.68, H 3.22, N 11.67%; found: C 36.64, H 3.30, N 11.62%.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C–H = 0.93 Å, N—H =0.905 Å, and with Uiso(H) = 1.2 Ueq(C, N).The H atoms of water molecules were located in difference Fouier maps, their bond lengths were set to 0.82 Å and afterwards they were refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku, 1999).

Figures top
[Figure 1] Fig. 1. Crystal structure and atom numbering of the title compound, shown with 20% probability displacement ellipsoids. Symmetry code for atoms labelled with A: 1-x, 1-y, z.
[Figure 2] Fig. 2. The packing digram of the title compound.
4-(4-Pyridyl)pyridinium pentaaqua(pyridazine-4,5-dicarboxylato)praseodymate(III) top
Crystal data top
(C10H9N2)[Pr(C6H2N2O4)2(H2O)5]F(000) = 720
Mr = 720.37Dx = 1.856 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2 2abCell parameters from 5385 reflections
a = 11.2726 (17) Åθ = 3.3–25.3°
b = 12.0023 (18) ŵ = 1.97 mm1
c = 9.5266 (14) ÅT = 293 K
V = 1288.9 (3) Å3Block, yellow
Z = 20.40 × 0.30 × 0.22 mm
Data collection top
Rigaku Mercury
diffractometer
2358 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
graphiteRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1413
Tmin = 0.454, Tmax = 0.649l = 1110
12497 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.6051P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2358 reflectionsΔρmax = 1.25 e Å3
216 parametersΔρmin = 0.43 e Å3
6 restraintsAbsolute structure: Flack (1983), 981 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.014 (18)
Crystal data top
(C10H9N2)[Pr(C6H2N2O4)2(H2O)5]V = 1288.9 (3) Å3
Mr = 720.37Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 11.2726 (17) ŵ = 1.97 mm1
b = 12.0023 (18) ÅT = 293 K
c = 9.5266 (14) Å0.40 × 0.30 × 0.22 mm
Data collection top
Rigaku Mercury
diffractometer
2358 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2280 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.649Rint = 0.030
12497 measured reflectionsθmax = 25.3°
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 1.25 e Å3
S = 1.09Δρmin = 0.43 e Å3
2358 reflectionsAbsolute structure: Flack (1983), 981 Friedel pairs
216 parametersFlack parameter: 0.014 (18)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.50000.50000.89791 (2)0.01750 (8)
O10.4932 (4)0.32723 (19)0.7261 (2)0.0323 (6)
O20.6434 (3)0.4430 (2)0.7086 (3)0.0351 (7)
O30.7353 (3)0.2019 (3)0.8030 (3)0.0471 (8)
O40.8272 (3)0.0738 (3)0.6792 (3)0.0552 (10)
O50.6242 (4)0.3454 (3)0.9953 (3)0.0490 (10)
H5A0.651 (4)0.303 (3)0.936 (4)0.049 (15)*
H5B0.629 (5)0.322 (5)1.076 (2)0.070 (19)*
O60.6757 (3)0.6135 (3)0.9524 (3)0.0405 (8)
H6A0.708 (7)0.643 (7)0.885 (5)0.14 (3)*
H6B0.701 (6)0.640 (5)1.026 (4)0.09 (2)*
O70.50000.50001.1547 (3)0.0276 (7)
H7A0.558 (3)0.522 (4)1.198 (4)0.059 (16)*
N10.7159 (3)0.1957 (3)0.3012 (3)0.0281 (7)
N20.6400 (3)0.2828 (3)0.2946 (3)0.0298 (7)
N31.00000.50000.3965 (5)0.0465 (11)
H3A1.00000.50000.3016 (12)0.042 (14)*
N41.00000.50001.1284 (5)0.0510 (12)
C10.6374 (3)0.2932 (3)0.5471 (4)0.0216 (8)
C20.7136 (3)0.2042 (3)0.5549 (4)0.0207 (8)
C30.7492 (3)0.1586 (3)0.4262 (4)0.0258 (8)
H3B0.80020.09770.42870.031*
C40.6030 (4)0.3280 (3)0.4125 (4)0.0291 (9)
H40.55020.38730.40620.035*
C50.5883 (3)0.3579 (3)0.6721 (4)0.0233 (8)
C60.7630 (3)0.1562 (3)0.6912 (4)0.0257 (8)
C70.9297 (4)0.4314 (4)0.4686 (6)0.0479 (12)
H7B0.88060.38300.41930.058*
C80.9268 (4)0.4292 (4)0.6114 (5)0.0458 (11)
H80.87630.38070.65840.055*
C91.00000.50000.6851 (6)0.0367 (11)
C100.9720 (8)0.4083 (5)1.0594 (6)0.081 (3)
H100.95340.34371.10880.097*
C110.9700 (7)0.4073 (5)0.9169 (5)0.073 (2)
H110.94800.34270.86980.087*
C121.00000.50000.8421 (5)0.0373 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.02098 (13)0.01818 (12)0.01336 (12)0.0006 (2)0.0000.000
O10.0269 (14)0.0402 (13)0.0298 (12)0.001 (2)0.010 (2)0.0098 (10)
O20.0478 (18)0.0265 (13)0.0310 (16)0.0096 (13)0.0152 (13)0.0092 (12)
O30.072 (2)0.0531 (19)0.0159 (14)0.0347 (16)0.0059 (15)0.0025 (14)
O40.077 (2)0.059 (2)0.0293 (17)0.0450 (19)0.0121 (17)0.0020 (16)
O50.079 (3)0.049 (2)0.0189 (18)0.0398 (19)0.0008 (17)0.0046 (16)
O60.042 (2)0.058 (2)0.0207 (16)0.0254 (17)0.0008 (15)0.0003 (16)
O70.0284 (18)0.0378 (18)0.0167 (15)0.003 (4)0.0000.000
N10.0346 (19)0.0321 (18)0.0176 (16)0.0084 (14)0.0010 (14)0.0026 (14)
N20.042 (2)0.0306 (17)0.0165 (16)0.0100 (16)0.0005 (15)0.0023 (14)
N30.053 (3)0.049 (3)0.038 (3)0.007 (6)0.0000.000
N40.061 (3)0.051 (3)0.041 (3)0.015 (8)0.0000.000
C10.026 (2)0.0207 (19)0.0184 (18)0.0002 (15)0.0018 (15)0.0006 (15)
C20.0216 (19)0.0222 (19)0.0183 (18)0.0001 (15)0.0010 (14)0.0017 (15)
C30.029 (2)0.027 (2)0.022 (2)0.0063 (17)0.0017 (15)0.0021 (16)
C40.040 (2)0.025 (2)0.022 (2)0.0088 (17)0.0001 (17)0.0015 (16)
C50.027 (2)0.026 (2)0.0165 (18)0.0067 (16)0.0017 (15)0.0037 (16)
C60.032 (2)0.026 (2)0.0188 (19)0.0056 (17)0.0008 (16)0.0028 (17)
C70.042 (3)0.043 (3)0.058 (3)0.009 (2)0.005 (2)0.002 (2)
C80.045 (3)0.048 (3)0.044 (3)0.011 (2)0.000 (2)0.003 (2)
C90.032 (3)0.031 (2)0.048 (3)0.008 (7)0.0000.000
C100.143 (9)0.050 (3)0.048 (3)0.022 (4)0.007 (4)0.003 (2)
C110.118 (8)0.056 (3)0.044 (3)0.028 (4)0.001 (3)0.001 (2)
C120.034 (3)0.033 (3)0.045 (3)0.001 (7)0.0000.000
Geometric parameters (Å, °) top
Pr1—O72.446 (3)N3—C7ii1.333 (5)
Pr1—O62.459 (3)N3—C71.333 (5)
Pr1—O6i2.459 (3)N3—H3A0.905 (10)
Pr1—O52.503 (3)N4—C101.321 (6)
Pr1—O5i2.503 (3)N4—C10ii1.321 (6)
Pr1—O2i2.516 (3)C1—C21.373 (5)
Pr1—O22.516 (3)C1—C41.403 (5)
Pr1—O12.643 (2)C1—C51.525 (5)
Pr1—O1i2.643 (2)C2—C31.401 (5)
Pr1—C52.921 (4)C2—C61.526 (5)
Pr1—C5i2.921 (4)C3—H3B0.9300
O1—C51.245 (5)C4—H40.9300
O2—C51.246 (4)C7—C81.361 (7)
O3—C61.238 (5)C7—H7B0.9300
O4—C61.231 (4)C8—C91.377 (5)
O5—H5A0.82 (4)C8—H80.9300
O5—H5B0.82 (3)C9—C8ii1.377 (5)
O6—H6A0.82 (7)C9—C121.496 (7)
O6—H6B0.82 (5)C10—C111.357 (7)
O7—H7A0.82 (4)C10—H100.9300
N1—C31.326 (5)C11—C121.363 (6)
N1—N21.354 (4)C11—H110.9300
N2—C41.315 (5)C12—C11ii1.363 (6)
O7—Pr1—O677.81 (8)C5—O1—Pr190.0 (2)
O7—Pr1—O6i77.81 (8)C5—O2—Pr195.9 (2)
O6—Pr1—O6i155.63 (15)Pr1—O5—H5A115 (4)
O7—Pr1—O568.24 (7)Pr1—O5—H5B130 (4)
O6—Pr1—O583.23 (14)H5A—O5—H5B114 (5)
O6i—Pr1—O587.78 (16)Pr1—O6—H6A115 (6)
O7—Pr1—O5i68.24 (7)Pr1—O6—H6B132 (5)
O6—Pr1—O5i87.78 (16)H6A—O6—H6B111 (7)
O6i—Pr1—O5i83.23 (14)Pr1—O7—H7A120 (3)
O5—Pr1—O5i136.47 (14)C3—N1—N2118.7 (3)
O7—Pr1—O2i135.77 (7)C4—N2—N1118.6 (3)
O6—Pr1—O2i121.20 (10)C7ii—N3—C7118.0 (6)
O6i—Pr1—O2i77.56 (11)C7ii—N3—H3A121.0 (3)
O5—Pr1—O2i145.74 (10)C7—N3—H3A121.0 (3)
O5i—Pr1—O2i72.84 (10)C10—N4—C10ii120.3 (6)
O7—Pr1—O2135.77 (7)C2—C1—C4117.0 (3)
O6—Pr1—O277.56 (11)C2—C1—C5125.5 (3)
O6i—Pr1—O2121.20 (10)C4—C1—C5117.5 (3)
O5—Pr1—O272.84 (10)C1—C2—C3115.8 (3)
O5i—Pr1—O2145.74 (10)C1—C2—C6124.7 (3)
O2i—Pr1—O288.45 (14)C3—C2—C6119.5 (3)
O7—Pr1—O1128.27 (5)N1—C3—C2125.0 (3)
O6—Pr1—O1126.08 (14)N1—C3—H3B117.5
O6i—Pr1—O170.89 (12)C2—C3—H3B117.5
O5—Pr1—O170.39 (11)N2—C4—C1124.8 (3)
O5i—Pr1—O1142.66 (14)N2—C4—H4117.6
O2i—Pr1—O175.56 (10)C1—C4—H4117.6
O2—Pr1—O150.33 (10)O2—C5—O1123.8 (3)
O7—Pr1—O1i128.27 (5)O2—C5—C1117.1 (3)
O6—Pr1—O1i70.89 (12)O1—C5—C1119.0 (3)
O6i—Pr1—O1i126.08 (14)O2—C5—Pr158.96 (19)
O5—Pr1—O1i142.66 (14)O1—C5—Pr164.81 (18)
O5i—Pr1—O1i70.39 (11)C1—C5—Pr1174.8 (3)
O2i—Pr1—O1i50.33 (10)O4—C6—O3125.7 (4)
O2—Pr1—O1i75.56 (10)O4—C6—C2116.0 (3)
O1—Pr1—O1i103.45 (10)O3—C6—C2118.2 (3)
O7—Pr1—C5137.44 (7)N3—C7—C8122.8 (5)
O6—Pr1—C5101.81 (12)N3—C7—H7B118.6
O6i—Pr1—C596.11 (11)C8—C7—H7B118.6
O5—Pr1—C569.47 (9)C7—C8—C9118.9 (5)
O5i—Pr1—C5153.75 (10)C7—C8—H8120.5
O2i—Pr1—C581.37 (9)C9—C8—H8120.5
O2—Pr1—C525.10 (9)C8—C9—C8ii118.7 (6)
O1—Pr1—C525.24 (11)C8—C9—C12120.7 (3)
O1i—Pr1—C589.54 (9)C8ii—C9—C12120.7 (3)
O7—Pr1—C5i137.44 (7)N4—C10—C11120.5 (6)
O6—Pr1—C5i96.11 (11)N4—C10—H10119.7
O6i—Pr1—C5i101.81 (12)C11—C10—H10119.7
O5—Pr1—C5i153.75 (10)C10—C11—C12120.8 (5)
O5i—Pr1—C5i69.47 (9)C10—C11—H11119.6
O2i—Pr1—C5i25.10 (9)C12—C11—H11119.6
O2—Pr1—C5i81.37 (9)C11—C12—C11ii117.0 (6)
O1—Pr1—C5i89.54 (9)C11—C12—C9121.5 (3)
O1i—Pr1—C5i25.24 (11)C11ii—C12—C9121.5 (3)
C5—Pr1—C5i85.11 (13)
O7—Pr1—O1—C5121.79 (19)C4—C1—C5—O190.2 (4)
O6—Pr1—O1—C517.8 (3)O7—Pr1—C5—O299.9 (2)
O6i—Pr1—O1—C5177.9 (3)O6—Pr1—C5—O215.2 (2)
O5—Pr1—O1—C583.3 (2)O6i—Pr1—C5—O2178.6 (2)
O5i—Pr1—O1—C5133.4 (3)O5—Pr1—C5—O293.2 (3)
O2i—Pr1—O1—C5100.5 (2)O5i—Pr1—C5—O294.4 (4)
O2—Pr1—O1—C50.3 (2)O2i—Pr1—C5—O2105.1 (2)
O1i—Pr1—O1—C558.21 (19)O1—Pr1—C5—O2179.4 (4)
C5i—Pr1—O1—C579.5 (3)O1i—Pr1—C5—O255.2 (2)
O7—Pr1—O2—C5107.2 (2)C5i—Pr1—C5—O280.1 (2)
O6—Pr1—O2—C5164.8 (2)O7—Pr1—C5—O180.6 (2)
O6i—Pr1—O2—C51.7 (3)O6—Pr1—C5—O1165.4 (2)
O5—Pr1—O2—C578.1 (2)O6i—Pr1—C5—O12.0 (2)
O5i—Pr1—O2—C5128.4 (3)O5—Pr1—C5—O187.3 (2)
O2i—Pr1—O2—C572.8 (2)O5i—Pr1—C5—O185.1 (4)
O1—Pr1—O2—C50.3 (2)O2i—Pr1—C5—O174.4 (2)
O1i—Pr1—O2—C5122.0 (2)O2—Pr1—C5—O1179.4 (4)
C5i—Pr1—O2—C597.0 (2)O1i—Pr1—C5—O1124.24 (19)
C3—N1—N2—C40.6 (5)C5i—Pr1—C5—O199.4 (2)
C4—C1—C2—C30.5 (5)C1—C2—C6—O4177.7 (4)
C5—C1—C2—C3178.8 (3)C3—C2—C6—O44.3 (6)
C4—C1—C2—C6178.6 (4)C1—C2—C6—O31.9 (6)
C5—C1—C2—C60.8 (6)C3—C2—C6—O3176.0 (4)
N2—N1—C3—C21.3 (6)C7ii—N3—C7—C80.3 (4)
C1—C2—C3—N10.7 (6)N3—C7—C8—C90.5 (7)
C6—C2—C3—N1177.5 (4)C7—C8—C9—C8ii0.2 (4)
N1—N2—C4—C10.7 (6)C7—C8—C9—C12179.8 (4)
C2—C1—C4—N21.2 (6)C10ii—N4—C10—C110.9 (6)
C5—C1—C4—N2178.2 (4)N4—C10—C11—C121.8 (13)
Pr1—O2—C5—O10.6 (4)C10—C11—C12—C11ii0.9 (6)
Pr1—O2—C5—C1176.2 (3)C10—C11—C12—C9179.1 (6)
Pr1—O1—C5—O20.6 (4)C8—C9—C12—C1127.2 (4)
Pr1—O1—C5—C1176.1 (3)C8ii—C9—C12—C11152.8 (4)
C2—C1—C5—O293.8 (5)C8—C9—C12—C11ii152.8 (4)
C4—C1—C5—O285.6 (4)C8ii—C9—C12—C11ii27.2 (4)
C2—C1—C5—O190.4 (5)
Symmetry codes: (i) −x+1, −y+1, z; (ii) −x+2, −y+1, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.82 (4)1.85 (4)2.662 (3)171 (5)
O6—H6B···O3iii0.82 (5)1.93 (5)2.749 (4)178 (7)
O6—H6A···N1iv0.82 (7)2.07 (6)2.881 (5)172 (8)
O5—H5B···N2v0.82 (3)2.14 (4)2.953 (4)172 (6)
O5—H5A···O30.82 (4)2.00 (4)2.809 (4)173 (5)
N3—H3A···N4vi0.91 (1)1.65 (1)2.555 (6)180
Symmetry codes: (iii) −x+3/2, y+1/2, −z+2; (iv) −x+3/2, y+1/2, −z+1; (v) x, y, z+1; (vi) x, y, z−1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4i0.82 (4)1.85 (4)2.662 (3)171 (5)
O6—H6B···O3i0.82 (5)1.93 (5)2.749 (4)178 (7)
O6—H6A···N1ii0.82 (7)2.07 (6)2.881 (5)172 (8)
O5—H5B···N2iii0.82 (3)2.14 (4)2.953 (4)172 (6)
O5—H5A···O30.82 (4)2.00 (4)2.809 (4)173 (5)
N3—H3A···N4iv0.91 (1)1.65 (1)2.555 (6)180
Symmetry codes: (i) −x+3/2, y+1/2, −z+2; (ii) −x+3/2, y+1/2, −z+1; (iii) x, y, z+1; (iv) x, y, z−1.
Acknowledgements top

Financial support from the Science Foundation of Nangjing Medical University (Reference: 8651) is gratefully acknowledged.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Escuer, A., Vicente, R., Mernari, B., Gueddi, A. & Pierrot, M. (1997). Inorg. Chem. 36, 2511–2516.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470–m3472.

Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.

Rigaku (1999). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.