metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[silver(I)-μ-4-amino­pyridine] perchlorate]: a 1-D staircase coordination polymer

aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand
*Correspondence e-mail: peter.steel@canterbury.ac.nz

(Received 2 September 2010; accepted 20 September 2010; online 30 September 2010)

Reaction of 4-amino­pyridine with silver(I) perchlorate leads to a one-dimensional coordination polymer, {[Ag(C5H6N2)]ClO4}n, in which the amino­pyridine binds through both N atoms. The perchlorate anion is hydrogen bonded to the amino H atoms and inter­acts weakly with the silver(I) atoms (Ag—O > 2.70 Å), both located on inversion centres, and some aromatic H atoms (O—H > 2.55 ÅA), thereby extending the dimensionality of the assembly. This is the first silver complex in which this ligand acts in a bridging mode.

Related literature

For discrete silver complexes of the same ligand, see: Kristian­sson (2000[Kristiansson, O. (2000). Acta Cryst. C56, 165-167.]); Abu-Youssef et al. (2006[Abu-Youssef, M. A. M., Langer, V. & Ohrstrom, L. (2006). Chem. Commun. pp. 1082-1084.]); Liu et al. (2005[Liu, X.-Y., Zhu, H.-L. & Fun, H.-K. (2005). Synth. React. Inorg. Met.-Org. Nano-Met.Chem. 35, 149-154.]); Zhu et al. (2003a[Zhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003a). Acta Cryst. E59, m726-m728.],b[Zhu, H.-L., Zhang, M., Sun, Z.-Y. & Rong, N.-N. (2003b). Z. Kristallogr. 218, 521-522.]); Li et al. (2005[Li, Y.-G., Zhu, H.-L., Song, Y. & Ng, S. W. (2005). Acta Cryst. E61, m2564-m2565.]); Ma et al. (2004[Ma, J.-L., Zou, Y., Meng, F. J., Lin, Y.-S., Wang, Z.-G. & Zhu, H.-L. (2004). Z. Kristallogr. 219, 159-160.]). For metallosupra­molecular assemblies derived from bridging heterocyclic ligands, see: Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]). For the use of silver(I) for the self-assembly of both discrete and polymeric aggregates with diverse mol­ecular architectures, see: Fitchett & Steel (2006[Fitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886-4888.]); O'Keefe & Steel (2007[O'Keefe, B. J. & Steel, P. J. (2007). CrystEngComm, 9, 222-227.]). For a review of the use of pyrazine and analogues as bridging ligands for silver(I)-based assemblies, see: Steel & Fitchett (2008[Steel, P. J. & Fitchett, C. M. (2008). Coord. Chem. Rev. 205, 990-1006.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H6N2)]ClO4

  • Mr = 301.44

  • Triclinic, [P \overline 1]

  • a = 5.0720 (2) Å

  • b = 9.0025 (3) Å

  • c = 9.5520 (3) Å

  • α = 93.198 (2)°

  • β = 96.992 (2)°

  • γ = 100.452 (2)°

  • V = 424.37 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 113 K

  • 0.35 × 0.11 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.455, Tmax = 0.878

  • 9107 measured reflections

  • 1740 independent reflections

  • 1591 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.03

  • 1740 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1i 0.86 (3) 2.16 (3) 2.984 (3) 161 (2)
N2—H2B⋯O3ii 0.85 (3) 2.29 (3) 2.984 (3) 139 (2)
Symmetry codes: (i) -x+1, -y-1, -z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For some time we have been involved in the study of metallosupramolecular assemblies derived from bridging heterocyclic ligands (Steel, 2005). In recent years we have focused on the use of silver(I) for the self-assembly of both discrete and polymeric aggregates with diverse molecular architectures (Fitchett & Steel, 2006; O'Keefe & Steel, 2007). In this context, we have recently reviewed the use of pyrazine and analogues as bridging ligands for silver(I)-based assemblies (Steel & Fitchett, 2008). 4-Aminopyridine (1) is a less symmetrical ligand that can potentially act as a bridge between metal centres. X-ray structures have been reported for complexes of (1) with silver nitrate (Kristiansson, 2000; Abu-Youssef et al., 2006), silver bicarbonate (Liu et al., 2005), silver trifluoroacetate (Zhu et al., 2003a), silver trifluoromethanesulfonate (Zhu et al., 2003b; Liu et al., 2005), silver terephthalate (Li et al., 2005) and silver 3-nitrobenzoate (Ma et al., 2004). However, in all these cases the ligand acts as a monodentate ligand binding through the pyridine nitrogen only and therefore forms discrete coordination complexes. We now describe a one-dimensional coordination polymer, obtained from reaction between this ligand and silver perchlorate, in which ligand (1) acts in a bridging bidentate mode.

The complex (2) crystallizes in the triclinic space group P-1 with a full 4-aminopyridine ligand, two half silver atoms and a perchlorate anion in the asymmetric unit (Fig. 1). The two independent silver atoms each lie on crystallographic centres of inversion and therefore act as linear connectors resulting in a 1-D coordination polymer. Ligand (1) coordinates to Ag1 through two pyridine N atoms and to Ag2 via two amino N atoms. The resulting coordination polymer has a staircase-type structure that results from the fact that the amino nitrogen introduces an angular turn (C4—N2—Ag2 111.9 (1)°) into the polymer chain.

Both of the amino group H atoms are hydrogen bonded (Table 1) to adjacent perchlorate counterions, which in turn serve to bridge adjacent chains through two such hydrogen bonds (Fig. 2). The perchlorate O atoms are also involved in weak interactions with the silver atoms, which in the case of Ag2 leads to a pseudo-octahedral coordination environment for this atom. The perchlorate O atoms make weak contacts with some CH H atoms. These additional interactions increase the dimensionality of the overall assembly. This structure represents the first example in which ligand (1) acts as a bridging ligand for silver(I).

Related literature top

For discrete silver complexes of the same ligand, see: Kristiansson (2000); Abu-Youssef et al. (2006); Liu et al. (2005); Zhu et al. (2003a,b); Li et al. (2005); Ma et al. (2004). For metallosupramolecular assemblies derived from bridging heterocyclic ligands, see: Steel (2005). For the use of silver(I) for the self-assembly of both discrete and polymeric aggregates with diverse molecular architectures, see: Fitchett & Steel (2006); O'Keefe & Steel (2007). For a review of the use of pyrazine and analogues as bridging ligands for silver(I)-based assemblies, see: Steel & Fitchett (2008).

Experimental top

The title compound was prepared by slow evaporation of an acetone solution containing an equimolar ratio of 4-aminopyridine and silver perchlorate.

Refinement top

CH hydrogen atoms were introduced in calculated positions as riding atoms, with Uiso(H) = 1.2Ueq(C). The NH H atoms were located from a difference Fourier map and their positions refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (2), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Extended structure of (2), showing the staircase structure and the hydrogen bonding interactions.
catena-Poly[[silver(I)-µ-4-aminopyridine] perchlorate] top
Crystal data top
[Ag(C5H6N2)]ClO4Z = 2
Mr = 301.44F(000) = 292
Triclinic, P1Dx = 2.359 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0720 (2) ÅCell parameters from 6232 reflections
b = 9.0025 (3) Åθ = 3.0–26.4°
c = 9.5520 (3) ŵ = 2.67 mm1
α = 93.198 (2)°T = 113 K
β = 96.992 (2)°Prism, orange
γ = 100.452 (2)°0.35 × 0.11 × 0.05 mm
V = 424.37 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1740 independent reflections
Radiation source: fine-focus sealed tube1591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.455, Tmax = 0.878k = 1111
9107 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.1489P]
where P = (Fo2 + 2Fc2)/3
1740 reflections(Δ/σ)max = 0.017
127 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Ag(C5H6N2)]ClO4γ = 100.452 (2)°
Mr = 301.44V = 424.37 (3) Å3
Triclinic, P1Z = 2
a = 5.0720 (2) ÅMo Kα radiation
b = 9.0025 (3) ŵ = 2.67 mm1
c = 9.5520 (3) ÅT = 113 K
α = 93.198 (2)°0.35 × 0.11 × 0.05 mm
β = 96.992 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1740 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1591 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.878Rint = 0.046
9107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.57 e Å3
1740 reflectionsΔρmin = 0.78 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.00000.00000.50000.02748 (9)
Ag20.50000.50000.00000.02716 (9)
Cl10.04375 (9)0.70217 (6)0.19452 (5)0.02471 (12)
O10.0156 (4)0.81713 (18)0.08849 (17)0.0372 (4)
O20.0718 (4)0.7384 (2)0.32954 (17)0.0405 (4)
O30.0969 (3)0.55690 (18)0.16137 (19)0.0338 (4)
O40.3233 (3)0.6953 (2)0.1977 (2)0.0530 (6)
N10.2684 (3)0.10407 (19)0.38878 (18)0.0212 (3)
C20.3565 (4)0.2298 (2)0.4306 (2)0.0253 (4)
H2A0.30030.27100.51390.030*
C30.5233 (4)0.3006 (2)0.3584 (2)0.0245 (4)
H3A0.58040.38860.39170.029*
C40.6080 (4)0.2422 (2)0.2358 (2)0.0187 (4)
C50.5244 (4)0.1101 (2)0.1946 (2)0.0224 (4)
H5A0.58240.06470.11340.027*
C60.3576 (4)0.0467 (2)0.2725 (2)0.0246 (4)
H6A0.30170.04300.24270.030*
N20.7619 (3)0.3164 (2)0.15325 (19)0.0218 (3)
H2B0.874 (5)0.362 (3)0.199 (3)0.026*
H2C0.845 (5)0.259 (3)0.097 (3)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01995 (12)0.03359 (15)0.02912 (14)0.00871 (9)0.00516 (9)0.01157 (10)
Ag20.02874 (13)0.02542 (14)0.02684 (14)0.00551 (9)0.00580 (9)0.00782 (9)
Cl10.0227 (2)0.0299 (3)0.0266 (3)0.01105 (19)0.00968 (18)0.0130 (2)
O10.0491 (10)0.0312 (9)0.0296 (9)0.0013 (7)0.0083 (7)0.0022 (7)
O20.0520 (10)0.0550 (11)0.0238 (8)0.0281 (9)0.0100 (7)0.0138 (8)
O30.0347 (8)0.0259 (8)0.0473 (10)0.0105 (6)0.0211 (7)0.0102 (7)
O40.0238 (9)0.0665 (13)0.0815 (15)0.0196 (8)0.0229 (9)0.0445 (12)
N10.0193 (8)0.0232 (8)0.0211 (8)0.0061 (6)0.0032 (6)0.0055 (7)
C20.0309 (11)0.0270 (11)0.0197 (10)0.0059 (8)0.0089 (8)0.0023 (8)
C30.0322 (11)0.0224 (10)0.0225 (10)0.0112 (8)0.0075 (8)0.0045 (8)
C40.0167 (9)0.0202 (9)0.0183 (9)0.0031 (7)0.0015 (7)0.0025 (7)
C50.0276 (10)0.0207 (10)0.0204 (10)0.0058 (8)0.0063 (8)0.0037 (8)
C60.0270 (10)0.0209 (10)0.0269 (11)0.0088 (8)0.0020 (8)0.0000 (8)
N20.0212 (8)0.0233 (9)0.0227 (9)0.0069 (7)0.0072 (7)0.0004 (7)
Geometric parameters (Å, º) top
Ag1—N12.1363 (16)C2—H2A0.9500
Ag1—N1i2.1363 (16)C3—C41.393 (3)
Ag2—N2ii2.2582 (18)C3—H3A0.9500
Ag2—N22.2583 (18)C4—C51.394 (3)
Cl1—O21.4301 (16)C4—N21.399 (3)
Cl1—O41.4344 (16)C5—C61.371 (3)
Cl1—O31.4430 (16)C5—H5A0.9500
Cl1—O11.4454 (17)C6—H6A0.9500
N1—C61.344 (3)N2—H2B0.85 (3)
N1—C21.353 (3)N2—H2C0.86 (3)
C2—C31.373 (3)
N1—Ag1—N1i180.00 (5)C4—C3—H3A120.3
N2ii—Ag2—N2180.0C5—C4—C3117.63 (18)
O2—Cl1—O4109.54 (11)C5—C4—N2120.84 (18)
O2—Cl1—O3109.91 (12)C3—C4—N2121.47 (18)
O4—Cl1—O3108.88 (10)C6—C5—C4119.20 (19)
O2—Cl1—O1108.65 (11)C6—C5—H5A120.4
O4—Cl1—O1110.77 (13)C4—C5—H5A120.4
O3—Cl1—O1109.08 (10)N1—C6—C5123.77 (19)
C6—N1—C2116.76 (17)N1—C6—H6A118.1
C6—N1—Ag1120.93 (13)C5—C6—H6A118.1
C2—N1—Ag1122.31 (13)C4—N2—Ag2111.91 (12)
N1—C2—C3123.15 (19)C4—N2—H2B115.5 (17)
N1—C2—H2A118.4Ag2—N2—H2B104.1 (17)
C3—C2—H2A118.4C4—N2—H2C113.7 (17)
C2—C3—C4119.45 (19)Ag2—N2—H2C101.4 (17)
C2—C3—H3A120.3H2B—N2—H2C109 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1ii0.86 (3)2.16 (3)2.984 (3)161 (2)
N2—H2B···O3iii0.85 (3)2.29 (3)2.984 (3)139 (2)
Symmetry codes: (ii) x+1, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C5H6N2)]ClO4
Mr301.44
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)5.0720 (2), 9.0025 (3), 9.5520 (3)
α, β, γ (°)93.198 (2), 96.992 (2), 100.452 (2)
V3)424.37 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.35 × 0.11 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.455, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
9107, 1740, 1591
Rint0.046
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.03
No. of reflections1740
No. of parameters127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.78

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N12.1363 (16)C4—N21.399 (3)
Ag2—N22.2583 (18)
C6—N1—C2116.76 (17)C2—N1—Ag1122.31 (13)
C6—N1—Ag1120.93 (13)C4—N2—Ag2111.91 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.86 (3)2.16 (3)2.984 (3)161 (2)
N2—H2B···O3ii0.85 (3)2.29 (3)2.984 (3)139 (2)
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z.
 

Acknowledgements

We thank the Chemistry Department, University of Canterbury, New Zealand, for funding.

References

First citationAbu-Youssef, M. A. M., Langer, V. & Ohrstrom, L. (2006). Chem. Commun. pp. 1082–1084.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886–4888.  Web of Science CSD CrossRef Google Scholar
First citationKristiansson, O. (2000). Acta Cryst. C56, 165–167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Song, Y. & Ng, S. W. (2005). Acta Cryst. E61, m2564–m2565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-Y., Zhu, H.-L. & Fun, H.-K. (2005). Synth. React. Inorg. Met.-Org. Nano-Met.Chem. 35, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J.-L., Zou, Y., Meng, F. J., Lin, Y.-S., Wang, Z.-G. & Zhu, H.-L. (2004). Z. Kristallogr. 219, 159–160.  CAS Google Scholar
First citationO'Keefe, B. J. & Steel, P. J. (2007). CrystEngComm, 9, 222–227.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSteel, P. J. & Fitchett, C. M. (2008). Coord. Chem. Rev. 205, 990–1006.  Web of Science CrossRef Google Scholar
First citationZhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003a). Acta Cryst. E59, m726–m728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-L., Zhang, M., Sun, Z.-Y. & Rong, N.-N. (2003b). Z. Kristallogr. 218, 521–522.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds