organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)biguanid-1-ium chloride

aInstitut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany, and bInstitut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 15 September 2010; accepted 21 September 2010; online 30 September 2010)

The title compound, C8H11FN5+·Cl, crystallized with a monoprotonated 1-(4-fluoro­phen­yl)biguanidinium cation and a chloride anion in the asymmetric unit. The biguanidium group is not planar [dihedral angle between the two CN3 groups = 52.0 (1)°] and is rotated with respect to the phenyl group [τ = 54.3 (3)°]. In the crystal, N—H⋯N hydrogen-bonded centrosymmetric dimers are connected into ribbons, which are further stabilized by N—H⋯Cl interactions, forming a three-dimensional hydrogen-bonded network.

Related literature

For related structures, see: Dalpiaz et al. (1996[Dalpiaz, A., Ferretti, V., Gilli, P. & Bertolasi, V. (1996). Acta Cryst. B52, 509-518.]); Portalone et al. (2004[Portalone, G. & Colapietro, M. (2004). Acta Cryst. E60, o1165-o1166.]); LeBel et al. (2005[LeBel, O., Maris, T., Duval, H. & Wuest, J. D. (2005). Can. J. Chem. 83, 615-625.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11FN5+·Cl

  • Mr = 231.67

  • Monoclinic, P 21 /n

  • a = 6.9954 (5) Å

  • b = 9.2187 (4) Å

  • c = 16.3149 (11) Å

  • β = 91.111 (5)°

  • V = 1051.93 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • STOE IPDS II two-circle-diffractometer

  • 13661 measured reflections

  • 1966 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.135

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.03

  • 1966 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

N8—C5 1.429 (2)
N8—C9 1.356 (2)
N9—C9 1.326 (2)
N10—C9 1.332 (2)
N10—C11 1.339 (2)
N12—C11 1.338 (3)
N13—C11 1.325 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯Cli 0.83 (2) 2.50 (2) 3.2758 (17) 156 (2)
N9—H91⋯Clii 0.88 (3) 2.47 (3) 3.3283 (18) 163 (2)
N9—H92⋯Cli 0.83 (3) 2.46 (3) 3.2358 (19) 155 (3)
N12—H121⋯Cl 0.87 (3) 2.50 (3) 3.3212 (19) 157 (2)
N12—H122⋯Cliii 0.88 (3) 2.80 (3) 3.5463 (19) 143 (2)
N13—H131⋯Cl 0.87 (3) 2.58 (3) 3.384 (2) 154 (2)
N13—H132⋯N10iv 0.87 (3) 2.35 (3) 3.177 (3) 160 (2)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.])and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1-(4-Fluorophenyl)biguanid hydrochloride crystallized with a monoprotonated 1-(4-fluorophenyl)biguanidinium cation and a chloride anion in the asymmetric unit. The protonation occurs at the N atom (N8) attached to the phenyl ring (Fig. 1). The biguanidium group is rotated with respect to the phenyl group by the rotation angle τ = 54.3 (3)° [the angle τ is defined as: τ = |ω1 + ω2 ± π|/2, the torsion angles ω1 and ω2 being respectively C4—C5—N8—C9 and C6—C5—N8—C9 (Dalpiaz et al., 1996)]. The planes defined by N8, C9, N9, N10 atoms and by N10, C11, N12, N13 atoms enclose a dihedral angle of 52.0 (1)°. Similar C—N bond lengths lead to the conclusion that the π- electron density is delocalized over the biguanidium group (Tab. 1). Two N—H···N hydrogen bonds stabilize a centrosymmetric dimer, which is further connected to a ribbon by R12(3) N—H···Cl- interactions (Bernstein et al., 1995; Fig. 2). The sixfold coordinated Cl- anion forms another two N—H···Cl- interactions leading to a three-dimensional hydrogen-bonded network.

Related literature top

For related structures, see: Dalpiaz et al. (1996); Portalone et al. (2004); LeBel et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Single crystals of title compound were obtained by cocrystallization of the commercially available 1-(4-fluorophenyl)biguanid hydrochloride (2.6 mg) and propylthiouracil (1.1 mg) from methanol (50 µL) at room temperature.

Refinement top

All H atoms were initially located by a difference Fourier synthesis. Subsequently, H atoms bonded to aromatic C atoms were refined using a riding model, with C—H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms were freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008)and XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···Cl- interactions.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-(4-Fluorophenyl)biguanid-1-ium chloride top
Crystal data top
C8H11FN5+·ClF(000) = 480
Mr = 231.67Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8763 reflections
a = 6.9954 (5) Åθ = 3.3–26.0°
b = 9.2187 (4) ŵ = 0.35 mm1
c = 16.3149 (11) ÅT = 173 K
β = 91.111 (5)°Block, colourless
V = 1051.93 (11) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
STOE IPDS II two-circle-
diffractometer
1605 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.135
Graphite monochromatorθmax = 25.6°, θmin = 3.3°
ω scansh = 88
13661 measured reflectionsk = 1111
1966 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1966 reflectionsΔρmax = 0.22 e Å3
165 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C8H11FN5+·ClV = 1051.93 (11) Å3
Mr = 231.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9954 (5) ŵ = 0.35 mm1
b = 9.2187 (4) ÅT = 173 K
c = 16.3149 (11) Å0.40 × 0.40 × 0.20 mm
β = 91.111 (5)°
Data collection top
STOE IPDS II two-circle-
diffractometer
1605 reflections with I > 2σ(I)
13661 measured reflectionsRint = 0.135
1966 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
1966 reflectionsΔρmin = 0.24 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.1564 (2)0.20564 (19)0.36588 (9)0.0508 (4)
C21.0273 (3)0.1954 (3)0.42677 (13)0.0300 (5)
C30.8876 (3)0.0914 (2)0.41942 (13)0.0269 (4)
H30.87990.02980.37280.032*
C40.7580 (3)0.0793 (2)0.48238 (12)0.0217 (4)
H40.65980.00830.47910.026*
C50.7707 (3)0.16967 (19)0.54979 (11)0.0186 (4)
C60.9161 (3)0.2732 (2)0.55575 (13)0.0240 (4)
H60.92660.33380.60270.029*
C71.0446 (3)0.2868 (2)0.49308 (15)0.0307 (5)
H71.14300.35780.49570.037*
N80.6343 (2)0.15622 (17)0.61347 (10)0.0210 (4)
H80.611 (3)0.075 (3)0.6328 (15)0.021 (6)*
C90.5280 (3)0.26846 (19)0.64102 (12)0.0184 (4)
N90.4158 (3)0.2418 (2)0.70383 (11)0.0259 (4)
H910.325 (4)0.301 (3)0.7203 (17)0.035 (7)*
H920.411 (4)0.159 (4)0.7249 (19)0.043 (8)*
N100.5351 (2)0.39359 (16)0.60039 (10)0.0212 (4)
C110.5124 (2)0.5212 (2)0.63811 (12)0.0197 (4)
N120.5563 (3)0.5444 (2)0.71722 (11)0.0243 (4)
H1210.562 (4)0.634 (3)0.7336 (16)0.035 (7)*
H1220.632 (4)0.480 (3)0.7417 (17)0.037 (7)*
N130.4489 (3)0.63199 (19)0.59356 (12)0.0259 (4)
H1310.448 (4)0.718 (3)0.6155 (17)0.035 (7)*
H1320.423 (4)0.618 (3)0.5418 (19)0.036 (7)*
Cl0.48546 (6)0.89909 (5)0.73525 (3)0.02180 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0368 (8)0.0794 (11)0.0369 (8)0.0062 (7)0.0206 (6)0.0049 (7)
C20.0218 (10)0.0440 (12)0.0245 (11)0.0048 (9)0.0080 (8)0.0022 (9)
C30.0235 (9)0.0357 (11)0.0214 (10)0.0108 (9)0.0021 (7)0.0060 (9)
C40.0184 (8)0.0200 (9)0.0265 (10)0.0043 (7)0.0029 (7)0.0025 (8)
C50.0211 (9)0.0160 (8)0.0186 (9)0.0053 (7)0.0014 (7)0.0024 (7)
C60.0251 (10)0.0210 (9)0.0259 (10)0.0010 (8)0.0004 (8)0.0029 (8)
C70.0255 (10)0.0304 (11)0.0362 (12)0.0037 (9)0.0028 (9)0.0013 (9)
N80.0296 (9)0.0119 (7)0.0218 (8)0.0036 (6)0.0079 (7)0.0022 (7)
C90.0213 (9)0.0155 (9)0.0183 (9)0.0025 (7)0.0002 (7)0.0011 (7)
N90.0322 (10)0.0164 (8)0.0295 (10)0.0056 (7)0.0122 (8)0.0029 (7)
N100.0305 (8)0.0148 (7)0.0182 (8)0.0048 (6)0.0030 (6)0.0008 (6)
C110.0180 (9)0.0171 (9)0.0243 (10)0.0019 (7)0.0045 (7)0.0020 (7)
N120.0361 (10)0.0155 (8)0.0211 (9)0.0034 (8)0.0017 (7)0.0006 (7)
N130.0392 (10)0.0150 (8)0.0234 (10)0.0055 (7)0.0048 (7)0.0006 (7)
Cl0.0265 (3)0.0155 (2)0.0235 (3)0.00112 (17)0.00391 (17)0.00160 (17)
Geometric parameters (Å, º) top
F1—C21.359 (2)N8—H80.83 (2)
C2—C31.373 (3)N9—C91.326 (2)
C2—C71.375 (3)N10—C91.332 (2)
C3—C41.388 (3)N9—H910.88 (3)
C3—H30.9500N9—H920.83 (3)
C4—C51.381 (3)N10—C111.339 (2)
C4—H40.9500N12—C111.338 (3)
C5—C61.397 (3)N13—C111.325 (3)
N8—C51.429 (2)N12—H1210.87 (3)
C6—C71.380 (3)N12—H1220.88 (3)
C6—H60.9500N13—H1310.87 (3)
C7—H70.9500N13—H1320.87 (3)
N8—C91.356 (2)
F1—C2—C3117.8 (2)C9—N8—H8116.9 (15)
F1—C2—C7118.9 (2)C5—N8—H8119.4 (15)
C3—C2—C7123.26 (19)N9—C9—N10125.00 (17)
C2—C3—C4117.75 (19)N9—C9—N8116.83 (17)
C2—C3—H3121.1N10—C9—N8118.04 (17)
C4—C3—H3121.1C9—N9—H91124.2 (17)
C5—C4—C3120.55 (18)C9—N9—H92121 (2)
C5—C4—H4119.7H91—N9—H92113 (3)
C3—C4—H4119.7C9—N10—C11121.78 (16)
C4—C5—C6120.18 (17)N13—C11—N12118.33 (18)
C4—C5—N8119.54 (17)N13—C11—N10117.81 (19)
C6—C5—N8120.28 (17)N12—C11—N10123.82 (17)
C7—C6—C5119.64 (19)C11—N12—H121117.2 (18)
C7—C6—H6120.2C11—N12—H122117.0 (17)
C5—C6—H6120.2H121—N12—H122118 (3)
C2—C7—C6118.6 (2)C11—N13—H131119.0 (19)
C2—C7—H7120.7C11—N13—H132118.7 (17)
C6—C7—H7120.7H131—N13—H132122 (3)
C9—N8—C5123.55 (16)
F1—C2—C3—C4178.81 (18)C5—C6—C7—C21.1 (3)
C7—C2—C3—C40.2 (3)C4—C5—N8—C9125.8 (2)
C2—C3—C4—C50.1 (3)C6—C5—N8—C954.3 (3)
C3—C4—C5—C60.9 (3)C5—N8—C9—N9176.00 (18)
C3—C4—C5—N8179.33 (16)C5—N8—C9—N108.0 (3)
C4—C5—C6—C71.4 (3)N9—C9—N10—C1134.9 (3)
N8—C5—C6—C7178.78 (18)N8—C9—N10—C11149.46 (18)
F1—C2—C7—C6178.25 (19)C9—N10—C11—N13154.64 (18)
C3—C2—C7—C60.3 (3)C9—N10—C11—N1227.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cli0.83 (2)2.50 (2)3.2758 (17)156 (2)
N9—H91···Clii0.88 (3)2.47 (3)3.3283 (18)163 (2)
N9—H92···Cli0.83 (3)2.46 (3)3.2358 (19)155 (3)
N12—H121···Cl0.87 (3)2.50 (3)3.3212 (19)157 (2)
N12—H122···Cliii0.88 (3)2.80 (3)3.5463 (19)143 (2)
N13—H131···Cl0.87 (3)2.58 (3)3.384 (2)154 (2)
N13—H132···N10iv0.87 (3)2.35 (3)3.177 (3)160 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H11FN5+·Cl
Mr231.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.9954 (5), 9.2187 (4), 16.3149 (11)
β (°) 91.111 (5)
V3)1051.93 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerSTOE IPDS II two-circle-
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13661, 1966, 1605
Rint0.135
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.03
No. of reflections1966
No. of parameters165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008)and XP (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
N8—C51.429 (2)N10—C111.339 (2)
N8—C91.356 (2)N12—C111.338 (3)
N9—C91.326 (2)N13—C111.325 (3)
N10—C91.332 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cli0.83 (2)2.50 (2)3.2758 (17)156 (2)
N9—H91···Clii0.88 (3)2.47 (3)3.3283 (18)163 (2)
N9—H92···Cli0.83 (3)2.46 (3)3.2358 (19)155 (3)
N12—H121···Cl0.87 (3)2.50 (3)3.3212 (19)157 (2)
N12—H122···Cliii0.88 (3)2.80 (3)3.5463 (19)143 (2)
N13—H131···Cl0.87 (3)2.58 (3)3.384 (2)154 (2)
N13—H132···N10iv0.87 (3)2.35 (3)3.177 (3)160 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

We thank Professor Dr E. Egert (Goethe-Universität Frankfurt, Germany) for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDalpiaz, A., Ferretti, V., Gilli, P. & Bertolasi, V. (1996). Acta Cryst. B52, 509–518.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLeBel, O., Maris, T., Duval, H. & Wuest, J. D. (2005). Can. J. Chem. 83, 615–625.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2004). Acta Cryst. E60, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds