organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2548-o2549

N-[(2-Chloro-3-quinol­yl)meth­yl]-4-fluoro­aniline

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Jamia Hamdard, New Delhi 110 062, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 14 August 2010; accepted 7 September 2010; online 11 September 2010)

In the title compound, C16H12ClFN2, the dihedral angle between the quinoline ring system and the flourophenyl ring is 86.70 (4)°. In the crystal, mol­ecules are linked into chains along the a axis by N—H⋯N hydrogen bonds. In addition, C—H⋯π inter­actions involving the two benzene rings are observed.

Related literature

For general background, properties and the biological activity of quinolines, see: Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]); Dutta et al. (2002[Dutta, N. J., Khunt, R. C. & Parikh, A. R. (2002). Indian J. Chem. Sect. B, 41, 433-435.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Meth-Cohn et al. (1981[Meth-Cohn, O., Tarnowski, B., Hayear, R., Keyzad, A. & Rhouti, S. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 2509-2517.]); Michael et al. (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]); Rajendran & Karavembu (2002[Rajendran, P. & Karavembu, R. (2002). Indian J. Chem. Sect. B, 41, 222-224.]); Robert & Meunier et al. (1998[Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.]). For the synthesis of quinolines, see: Kouznetsov et al. (2005[Kouznetsov, V. V., Vargas Mendez, L. Y. & Melendez Gomez, C. M. (2005). Curr. Org. Chem. 9, 141-161.]). For related structures, see: Butcher et al. 2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.]); Lynch et al. (2001[Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. E57, o54-o55.]); Subashini et al. (2009[Subashini, R., Khan, F. N., Kumar, R., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2721.]); Yathirajan et al. (2007[Yathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763-o765.]); Wu et al. (2009[Wu, T.-Q., Wang, J.-H., Shen, F. & Hu, A.-X. (2009). Acta Cryst. E65, o1463.]); Khan et al. (2010[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o201.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) .

[Scheme 1]

Experimental

Crystal data
  • C16H12ClFN2

  • Mr = 286.73

  • Triclinic, [P \overline 1]

  • a = 7.3661 (8) Å

  • b = 8.8967 (9) Å

  • c = 11.5129 (12) Å

  • α = 68.704 (1)°

  • β = 74.468 (1)°

  • γ = 75.445 (1)°

  • V = 667.25 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.55 × 0.50 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.858, Tmax = 0.932

  • 8162 measured reflections

  • 3930 independent reflections

  • 3633 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.03

  • 3930 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H18⋯N1i 0.86 2.30 3.1353 (12) 165
C4—H4⋯Cg2ii 0.93 2.91 3.7494 (13) 151
C10—H10ACg1iii 0.97 2.62 3.5365 (12) 157
C10—H10BCg2iv 0.97 2.98 3.8083 (11) 145
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinoline derivatives represent a major class of heterocycles, and a number of preparations using them have been known since the late 1800s. Quinolines are found in natural products (Morimoto et al., 1991; Michael et al., 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Several quinoline derivatives have been evaluated in vitro against a number of parasites of HTLV-1 transformed cells. 2-Chloro substituted quinolines are vital synthetic intermediates in the construction of a large number of linearly fused tri- and tetra- cyclic quinolines studied for the DNA intercalating properties (Meth-Cohn et al., 1981; Rajendran & Karavembu, 2002; Dutta et al., 2002). A review on recent progress in the synthesis of quinolines (Kouznetsov et al. 2005) has been described. The crystal structure studies of 8-chloro-2-methylquinoline (Wu et al., 2009), 2-chloro-4-methylquinoline (Lynch et al., 2001), 4-chloro-8-(trifluoromethyl)quinoline (Yathirajan et al., 2007), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and 2-chloro-7-methylquinoline-3-carbaldehyde (Subashini et al., 2009) have been reported. In view of the importance of quinolines, the paper reports the synthesis and crystal structure of the title compound.

In the title molecule (Fig. 1), the 2-chloroquinoline ring system and 4-fluoroaniline ring are bonded to a methane carbon, C10. The dihedral angle between the mean planes of the planar chloroquinoline ring system (dihedral angle between rings = 0.92 (5)°) and the flourophenyl ring is 86.70 (4)°. Bond distances (Allen et al., 1987) and angles are in normal ranges.

The molecules are linked into chains along the a axis by N—H···N hydrogen bonds (Fig. 2). In addition, C—H···π interactions involving the two benzene rings (Table 1) influence crystal packing in the unit cell.

Related literature top

For general background, properties and the biological activity of quinolines, see: Campbell et al. (1988); Dutta et al. (2002); Markees et al. (1970); Meth-Cohn et al. (1981); Michael et al. (1997); Morimoto et al. (1991); Padwa et al. (1999); Rajendran & Karavembu (2002); Robert & Meunier et al. (1998). For the synthesis of quinolines, see: Kouznetsov et al. (2005). For related structures, see: Butcher et al. 2007); Lynch et al. (2001); Subashini et al. (2009); Yathirajan et al. (2007); Wu et al. (2009); Khan et al. (2010). For bond-length data, see: Allen et al. (1987 ).

Experimental top

In a mixture of 3-(chloromethyl)-2-chloroquinoline (0.003 mol) and substituted phenyl amine (0.003 mol) in 20 ml of absolute ethanol, 1 ml of triethylamine (TEA) was added and refluxed for 12–15 hrs (Fig. 3). After completion of the reaction, content of the flask was reduced to half and left overnight. The crystalline mass obtained was filtered off, washed with water, dried and re-crystallized from ethanol to give N-[(2-chloroquinolin-3-yl)methyl]-4-fluoroaniline. X-ray quality crystals were obtained by slow evaporation of a methanol solution (m.p. 413–415 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93 Å (CH), 0.97 Å (CH2) or 0.86 Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate weak N—H···N hydrogen bonds.
[Figure 3] Fig. 3. Reaction scheme for the title compound.
N-[(2-Chloro-3-quinolyl)methyl]-4-fluoroaniline top
Crystal data top
C16H12ClFN2Z = 2
Mr = 286.73F(000) = 296
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3661 (8) ÅCell parameters from 5222 reflections
b = 8.8967 (9) Åθ = 2.5–31.0°
c = 11.5129 (12) ŵ = 0.29 mm1
α = 68.704 (1)°T = 100 K
β = 74.468 (1)°Plate, colourless
γ = 75.445 (1)°0.55 × 0.50 × 0.25 mm
V = 667.25 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3930 independent reflections
Radiation source: fine-focus sealed tube3633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 31.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.858, Tmax = 0.932k = 1212
8162 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2404P]
where P = (Fo2 + 2Fc2)/3
3930 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H12ClFN2γ = 75.445 (1)°
Mr = 286.73V = 667.25 (12) Å3
Triclinic, P1Z = 2
a = 7.3661 (8) ÅMo Kα radiation
b = 8.8967 (9) ŵ = 0.29 mm1
c = 11.5129 (12) ÅT = 100 K
α = 68.704 (1)°0.55 × 0.50 × 0.25 mm
β = 74.468 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3633 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.932Rint = 0.014
8162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
3930 reflectionsΔρmin = 0.30 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.15120 (4)0.21591 (3)0.79554 (2)0.02245 (8)
N11.24567 (12)0.03932 (10)0.60973 (8)0.01634 (16)
N20.55793 (12)0.03799 (11)0.74940 (8)0.01744 (17)
H180.49050.02910.70250.021*
F10.24347 (10)0.46529 (9)1.02706 (7)0.02663 (16)
C71.09918 (14)0.03020 (11)0.67819 (9)0.01494 (17)
C11.02460 (14)0.25805 (11)0.49326 (9)0.01455 (17)
C100.74539 (14)0.05999 (12)0.75411 (9)0.01625 (18)
H10A0.75130.15570.73080.020*
H10B0.76570.09770.84070.020*
C80.90473 (13)0.03112 (11)0.66692 (9)0.01406 (17)
C51.36831 (15)0.26375 (13)0.44050 (10)0.01949 (19)
H51.49130.21650.45520.023*
C61.21153 (14)0.18553 (12)0.51570 (9)0.01520 (17)
C90.87191 (13)0.17731 (12)0.57294 (9)0.01522 (17)
H90.74740.22400.56150.018*
C140.21346 (15)0.33659 (13)0.88812 (10)0.0206 (2)
H140.08790.39100.88820.025*
C110.48346 (14)0.14581 (12)0.81816 (9)0.01552 (18)
C20.99836 (15)0.40819 (12)0.39406 (9)0.01792 (19)
H170.87640.45680.37770.022*
C130.32377 (16)0.36116 (12)0.95720 (10)0.01941 (19)
C31.15214 (16)0.48201 (13)0.32212 (10)0.01972 (19)
H31.13380.58060.25720.024*
C120.59034 (14)0.17592 (12)0.88891 (9)0.01760 (18)
H120.71660.12350.88890.021*
C41.33828 (16)0.40979 (13)0.34565 (10)0.0210 (2)
H41.44130.46160.29650.025*
C150.29365 (14)0.22899 (13)0.81854 (10)0.01916 (19)
H150.22080.21160.77140.023*
C160.50987 (15)0.28339 (13)0.95926 (10)0.01933 (19)
H160.58090.30211.00680.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01931 (13)0.01748 (12)0.02433 (13)0.00220 (9)0.00775 (9)0.00240 (9)
N10.0150 (4)0.0161 (4)0.0176 (4)0.0027 (3)0.0047 (3)0.0039 (3)
N20.0128 (4)0.0214 (4)0.0208 (4)0.0023 (3)0.0036 (3)0.0099 (3)
F10.0308 (4)0.0241 (3)0.0268 (3)0.0030 (3)0.0011 (3)0.0146 (3)
C70.0154 (4)0.0129 (4)0.0162 (4)0.0015 (3)0.0049 (3)0.0037 (3)
C10.0149 (4)0.0143 (4)0.0149 (4)0.0024 (3)0.0030 (3)0.0052 (3)
C100.0139 (4)0.0152 (4)0.0183 (4)0.0028 (3)0.0019 (3)0.0045 (3)
C80.0137 (4)0.0142 (4)0.0148 (4)0.0028 (3)0.0028 (3)0.0049 (3)
C50.0159 (4)0.0216 (5)0.0208 (5)0.0063 (4)0.0028 (3)0.0050 (4)
C60.0147 (4)0.0157 (4)0.0161 (4)0.0033 (3)0.0033 (3)0.0054 (3)
C90.0134 (4)0.0156 (4)0.0164 (4)0.0016 (3)0.0037 (3)0.0049 (3)
C140.0181 (4)0.0211 (5)0.0200 (5)0.0001 (4)0.0030 (4)0.0063 (4)
C110.0152 (4)0.0152 (4)0.0143 (4)0.0044 (3)0.0012 (3)0.0025 (3)
C20.0197 (4)0.0159 (4)0.0169 (4)0.0022 (3)0.0044 (3)0.0035 (3)
C130.0242 (5)0.0161 (4)0.0165 (4)0.0047 (4)0.0001 (4)0.0054 (3)
C30.0239 (5)0.0166 (4)0.0174 (4)0.0054 (4)0.0037 (4)0.0029 (3)
C120.0165 (4)0.0180 (4)0.0180 (4)0.0051 (3)0.0030 (3)0.0043 (3)
C40.0210 (5)0.0212 (5)0.0202 (5)0.0088 (4)0.0012 (4)0.0043 (4)
C150.0165 (4)0.0220 (5)0.0196 (4)0.0016 (4)0.0051 (3)0.0073 (4)
C160.0221 (5)0.0199 (4)0.0175 (4)0.0077 (4)0.0037 (4)0.0050 (4)
Geometric parameters (Å, º) top
Cl1—C71.7434 (10)C5—H50.93
N1—C71.3016 (13)C9—H90.93
N1—C61.3732 (12)C14—C131.3792 (15)
N2—C111.3792 (12)C14—C151.3878 (14)
N2—C101.4388 (13)C14—H140.93
N2—H180.86C11—C121.4011 (14)
F1—C131.3661 (12)C11—C151.4077 (14)
C7—C81.4217 (13)C2—C31.3700 (14)
C1—C91.4133 (13)C2—H170.93
C1—C61.4149 (13)C13—C161.3737 (15)
C1—C21.4164 (13)C3—C41.4128 (15)
C10—C81.5161 (13)C3—H30.93
C10—H10A0.97C12—C161.3936 (14)
C10—H10B0.97C12—H120.93
C8—C91.3714 (13)C4—H40.93
C5—C41.3726 (15)C15—H150.93
C5—C61.4136 (13)C16—H160.93
C7—N1—C6117.48 (8)C13—C14—C15118.66 (10)
C11—N2—C10121.76 (8)C13—C14—H14120.7
C11—N2—H18119.1C15—C14—H14120.7
C10—N2—H18119.1N2—C11—C12122.23 (9)
N1—C7—C8126.51 (9)N2—C11—C15119.59 (9)
N1—C7—Cl1115.47 (7)C12—C11—C15118.18 (9)
C8—C7—Cl1118.01 (7)C3—C2—C1120.15 (9)
C9—C1—C6117.92 (9)C3—C2—H17119.9
C9—C1—C2123.09 (9)C1—C2—H17119.9
C6—C1—C2118.98 (9)F1—C13—C16119.13 (9)
N2—C10—C8113.32 (8)F1—C13—C14118.49 (9)
N2—C10—H10A108.9C16—C13—C14122.38 (10)
C8—C10—H10A108.9C2—C3—C4120.64 (9)
N2—C10—H10B108.9C2—C3—H3119.7
C8—C10—H10B108.9C4—C3—H3119.7
H10A—C10—H10B107.7C16—C12—C11120.86 (9)
C9—C8—C7115.61 (8)C16—C12—H12119.6
C9—C8—C10122.70 (8)C11—C12—H12119.6
C7—C8—C10121.69 (8)C5—C4—C3120.52 (9)
C4—C5—C6119.71 (9)C5—C4—H4119.7
C4—C5—H5120.1C3—C4—H4119.7
C6—C5—H5120.1C14—C15—C11121.05 (9)
N1—C6—C5118.51 (9)C14—C15—H15119.5
N1—C6—C1121.50 (9)C11—C15—H15119.5
C5—C6—C1119.99 (9)C13—C16—C12118.87 (9)
C8—C9—C1120.95 (9)C13—C16—H16120.6
C8—C9—H9119.5C12—C16—H16120.6
C1—C9—H9119.5
C6—N1—C7—C80.94 (15)C6—C1—C9—C81.63 (14)
C6—N1—C7—Cl1179.70 (7)C2—C1—C9—C8179.30 (9)
C11—N2—C10—C882.06 (11)C10—N2—C11—C124.96 (14)
N1—C7—C8—C90.82 (15)C10—N2—C11—C15174.83 (9)
Cl1—C7—C8—C9179.83 (7)C9—C1—C2—C3178.48 (9)
N1—C7—C8—C10178.91 (9)C6—C1—C2—C30.58 (15)
Cl1—C7—C8—C100.43 (13)C15—C14—C13—F1179.04 (9)
N2—C10—C8—C914.02 (13)C15—C14—C13—C160.18 (16)
N2—C10—C8—C7165.69 (9)C1—C2—C3—C40.04 (16)
C7—N1—C6—C5179.69 (9)N2—C11—C12—C16178.83 (9)
C7—N1—C6—C10.29 (14)C15—C11—C12—C160.96 (14)
C4—C5—C6—N1179.83 (9)C6—C5—C4—C30.37 (16)
C4—C5—C6—C10.19 (15)C2—C3—C4—C50.44 (16)
C9—C1—C6—N11.53 (14)C13—C14—C15—C110.14 (16)
C2—C1—C6—N1179.36 (9)N2—C11—C15—C14179.10 (9)
C9—C1—C6—C5178.45 (9)C12—C11—C15—C140.70 (15)
C2—C1—C6—C50.65 (14)F1—C13—C16—C12179.30 (9)
C7—C8—C9—C10.55 (14)C14—C13—C16—C120.08 (16)
C10—C8—C9—C1179.73 (8)C11—C12—C16—C130.67 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H18···N1i0.862.303.1353 (12)165
C4—H4···Cg2ii0.932.913.7494 (13)151
C10—H10A···Cg1iii0.972.623.5365 (12)157
C10—H10B···Cg2iv0.972.983.8083 (11)145
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H12ClFN2
Mr286.73
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3661 (8), 8.8967 (9), 11.5129 (12)
α, β, γ (°)68.704 (1), 74.468 (1), 75.445 (1)
V3)667.25 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.55 × 0.50 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.858, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
8162, 3930, 3633
Rint0.014
(sin θ/λ)max1)0.733
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.03
No. of reflections3930
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H18···N1i0.862.303.1353 (12)165
C4—H4···Cg2ii0.932.913.7494 (13)151
C10—H10A···Cg1iii0.972.623.5365 (12)157
C10—H10B···Cg2iv0.972.983.8083 (11)145
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z+2.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by the Ohio Board of Regents grant CAP-491, and by YSU. CSC thanks the University of Mysore for research facilities and HSY thanks the University of Mysore for sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDutta, N. J., Khunt, R. C. & Parikh, A. R. (2002). Indian J. Chem. Sect. B, 41, 433–435.  Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKouznetsov, V. V., Vargas Mendez, L. Y. & Melendez Gomez, C. M. (2005). Curr. Org. Chem. 9, 141–161.  Web of Science CrossRef CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2001). Acta Cryst. E57, o54–o55.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMeth-Cohn, O., Tarnowski, B., Hayear, R., Keyzad, A. & Rhouti, S. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 2509–2517.  CrossRef Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajendran, P. & Karavembu, R. (2002). Indian J. Chem. Sect. B, 41, 222–224.  Google Scholar
First citationRobert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, R., Khan, F. N., Kumar, R., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2721.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, T.-Q., Wang, J.-H., Shen, F. & Hu, A.-X. (2009). Acta Cryst. E65, o1463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763–o765.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2548-o2549
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds