organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E)-6-Meth­­oxy-3,4-di­hydro­naphthalen-1(2H)-one oxime

aTesting Center, Yanbian University, Yanji 133000, People's Republic of China, bAgricultural College of Yanbian University, Longjing 133400, People's Republic of China, and cKey Laboratory of Organism Functional Factors of the Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133000, People's Republic of China
*Correspondence e-mail: rongbihan@ybu.edu.cn

(Received 12 August 2010; accepted 27 August 2010; online 4 September 2010)

In the crystal structure of the title compound, C11H13NO2, the mol­ecules are paired into centrosymmetric dimers via inter­molecular O—H⋯N hydrogen bonds.

Related literature

For the biological activity of benzazepine derivatives, see: Wei et al. (2009[Wei, C. X., Zhang, W., Quan, Z. S., Han, R. B., Jiang, R. S. & Piao, F. Y. (2009). Lett. Drug Des. Discov. 6, 548-553.]). For details of the synthesis, see: Hester (1967[Hester, J. B. (1967). J. Org. Chem. 32, 3804-3808.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO2

  • Mr = 191.22

  • Monoclinic, P 21 /c

  • a = 8.185 (6) Å

  • b = 15.878 (10) Å

  • c = 8.053 (5) Å

  • β = 109.02 (3)°

  • V = 989.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 K

  • 0.12 × 0.11 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.989, Tmax = 0.992

  • 9568 measured reflections

  • 2260 independent reflections

  • 1724 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.10

  • 2260 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.09 2.805 (2) 146
Symmetry code: (i) -x, -y, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our study of 2,3,4,5-tetrahydro-7-methoxy-1H-2-benzazepin-1-one and its isomer, which exhibit anticonvulsant activities (Wei et al., 2009), we report here the crystal structure of the title compound, which was used in our attempts to improve the selectivity of Backmann rearrangement.

In the title compound (Fig. 1) all bond lengths and angles are normal. Intermolecular O—H···N hydrogen bonds (Table 1) link molecules into centrosymmetric dimer. The cystal packing is further stablized by van der Waals forces.

Related literature top

For the biological activity of benzazepine derivatives, see: Wei et al. (2009). For details of the synthesis, see: Hester (1967).

Experimental top

The title compound was prepared according to the literature (Hester et al., 1967). Colourless single crystals suitable for X-ray diffraction were cultured from a solution of 95% alcohol by slow evaporation at room temperature.

Refinement top

All H atoms were posioned geometrically and refined using a rding model, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
(1E)-6-Methoxy-3,4-dihydronaphthalen-1(2H)-one oxime top
Crystal data top
C11H13NO2F(000) = 408
Mr = 191.22Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6826 reflections
a = 8.185 (6) Åθ = 3.1–27.5°
b = 15.878 (10) ŵ = 0.09 mm1
c = 8.053 (5) ÅT = 290 K
β = 109.02 (3)°Block, colourless
V = 989.4 (11) Å30.12 × 0.11 × 0.09 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2260 independent reflections
Radiation source: fine-focus sealed tube1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 109
Tmin = 0.989, Tmax = 0.992k = 2020
9568 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.0477P]
where P = (Fo2 + 2Fc2)/3
2260 reflections(Δ/σ)max = 0.022
129 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H13NO2V = 989.4 (11) Å3
Mr = 191.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.185 (6) ŵ = 0.09 mm1
b = 15.878 (10) ÅT = 290 K
c = 8.053 (5) Å0.12 × 0.11 × 0.09 mm
β = 109.02 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2260 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1724 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.992Rint = 0.024
9568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.10Δρmax = 0.14 e Å3
2260 reflectionsΔρmin = 0.20 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22438 (15)0.07109 (8)0.84267 (17)0.0453 (3)
C20.19968 (18)0.05982 (10)0.65136 (18)0.0588 (4)
H2A0.08740.08190.58310.071*
H2B0.20070.00010.62600.071*
C30.33762 (19)0.10345 (11)0.59483 (18)0.0660 (4)
H3A0.33140.08370.47900.079*
H3B0.31600.16360.58740.079*
C40.51630 (18)0.08688 (11)0.72171 (18)0.0601 (4)
H4A0.54180.02720.72250.072*
H4B0.60090.11700.68360.072*
C50.52944 (15)0.11461 (7)0.90409 (15)0.0421 (3)
C60.38514 (15)0.10886 (7)0.95932 (15)0.0408 (3)
C70.39938 (17)0.13786 (8)1.12760 (17)0.0518 (3)
H70.30330.13551.16500.062*
C80.55144 (17)0.16968 (9)1.23853 (18)0.0545 (4)
H80.55830.18831.35010.065*
C90.69544 (15)0.17400 (8)1.18325 (16)0.0466 (3)
C100.68406 (15)0.14690 (8)1.01691 (16)0.0454 (3)
H100.78030.15020.97990.055*
C110.98486 (18)0.22289 (12)1.2455 (2)0.0728 (5)
H11A1.02450.17091.21100.109*
H11B1.07620.24781.33970.109*
H11C0.95120.26081.14720.109*
N10.11395 (13)0.04621 (7)0.91439 (15)0.0541 (3)
O10.03579 (13)0.01124 (8)0.79076 (14)0.0707 (4)
H10.09580.01080.84270.106*
O20.84142 (12)0.20688 (7)1.30220 (13)0.0634 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0398 (6)0.0452 (6)0.0489 (7)0.0035 (5)0.0115 (5)0.0013 (5)
C20.0542 (8)0.0699 (9)0.0462 (7)0.0122 (7)0.0077 (6)0.0058 (6)
C30.0646 (9)0.0886 (11)0.0403 (7)0.0151 (8)0.0110 (6)0.0007 (7)
C40.0559 (8)0.0813 (10)0.0469 (8)0.0102 (7)0.0219 (6)0.0115 (7)
C50.0415 (6)0.0433 (6)0.0406 (6)0.0005 (5)0.0122 (5)0.0015 (5)
C60.0397 (6)0.0397 (6)0.0420 (6)0.0028 (5)0.0117 (5)0.0004 (5)
C70.0469 (7)0.0615 (8)0.0516 (8)0.0096 (6)0.0224 (6)0.0074 (6)
C80.0546 (7)0.0654 (9)0.0454 (7)0.0120 (6)0.0190 (6)0.0117 (6)
C90.0419 (6)0.0481 (7)0.0453 (7)0.0054 (5)0.0081 (5)0.0001 (5)
C100.0374 (6)0.0529 (7)0.0460 (7)0.0019 (5)0.0137 (5)0.0019 (5)
C110.0445 (7)0.0990 (13)0.0673 (10)0.0210 (8)0.0077 (7)0.0048 (9)
N10.0399 (6)0.0618 (7)0.0579 (7)0.0126 (5)0.0124 (5)0.0070 (5)
O10.0464 (6)0.0917 (8)0.0675 (7)0.0275 (5)0.0098 (5)0.0114 (6)
O20.0465 (5)0.0848 (7)0.0525 (6)0.0161 (5)0.0072 (4)0.0123 (5)
Geometric parameters (Å, º) top
C1—N11.2833 (17)C6—C71.3997 (19)
C1—C61.4724 (18)C7—C81.3703 (19)
C1—C21.498 (2)C7—H70.9300
C2—C31.516 (2)C8—C91.3907 (19)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—O21.3681 (16)
C3—C41.509 (2)C9—C101.3808 (19)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—O21.415 (2)
C4—C51.5032 (19)C11—H11A0.9600
C4—H4A0.9700C11—H11B0.9600
C4—H4B0.9700C11—H11C0.9600
C5—C101.3930 (19)N1—O11.4164 (16)
C5—C61.3940 (18)O1—H10.8200
N1—C1—C6116.90 (12)C5—C6—C7118.39 (11)
N1—C1—C2123.19 (12)C5—C6—C1119.81 (12)
C6—C1—C2119.86 (11)C7—C6—C1121.79 (11)
C1—C2—C3112.97 (11)C8—C7—C6121.59 (12)
C1—C2—H2A109.0C8—C7—H7119.2
C3—C2—H2A109.0C6—C7—H7119.2
C1—C2—H2B109.0C7—C8—C9119.60 (13)
C3—C2—H2B109.0C7—C8—H8120.2
H2A—C2—H2B107.8C9—C8—H8120.2
C4—C3—C2111.67 (13)O2—C9—C10124.44 (11)
C4—C3—H3A109.3O2—C9—C8115.63 (12)
C2—C3—H3A109.3C10—C9—C8119.93 (12)
C4—C3—H3B109.3C9—C10—C5120.47 (11)
C2—C3—H3B109.3C9—C10—H10119.8
H3A—C3—H3B107.9C5—C10—H10119.8
C5—C4—C3110.81 (12)O2—C11—H11A109.5
C5—C4—H4A109.5O2—C11—H11B109.5
C3—C4—H4A109.5H11A—C11—H11B109.5
C5—C4—H4B109.5O2—C11—H11C109.5
C3—C4—H4B109.5H11A—C11—H11C109.5
H4A—C4—H4B108.1H11B—C11—H11C109.5
C10—C5—C6120.00 (12)C1—N1—O1112.30 (12)
C10—C5—C4120.37 (11)N1—O1—H1109.5
C6—C5—C4119.62 (11)C9—O2—C11118.02 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.092.805 (2)146
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC11H13NO2
Mr191.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.185 (6), 15.878 (10), 8.053 (5)
β (°) 109.02 (3)
V3)989.4 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.11 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.989, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
9568, 2260, 1724
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.10
No. of reflections2260
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.092.805 (2)146.2
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010) and the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 2006184001).

References

First citationHester, J. B. (1967). J. Org. Chem. 32, 3804–3808.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, C. X., Zhang, W., Quan, Z. S., Han, R. B., Jiang, R. S. & Piao, F. Y. (2009). Lett. Drug Des. Discov. 6, 548–553.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds