organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hy­dr­oxy-1,2-di­phenyl­ethyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Technology, Binzhou University, Binzhou 256600, Shandong, People's Republic of China
*Correspondence e-mail: fanchuangang2009@163.com

(Received 6 September 2010; accepted 25 September 2010; online 30 September 2010)

In the title compound, C21H18N2O2, the amino group is involved in an intra­molecular N—H⋯O hydrogen bond. The rings make dihedral angles of 37.9 (2), 64.4 (2) and 83.6 (2)°. In the crystal, inter­molecular O—H⋯N and O—H⋯O hydrogen bonds link the mol­ecules into chains running along [100].

Related literature

For related structures, see: Fun et al.(2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]); Seijas et al. (2007[Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o303-o305.]). For general background to the biological activity of Schiff bases and their metal complexes, see: Chakraborty et al. (1996[Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191-195.]); Jeewoth et al. (1999[Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445-448.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O2

  • Mr = 330.37

  • Orthorhombic, P 21 21 21

  • a = 7.7318 (8) Å

  • b = 11.0653 (12) Å

  • c = 19.725 (2) Å

  • V = 1687.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.41 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.989

  • 7865 measured reflections

  • 1729 independent reflections

  • 1051 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.07

  • 1729 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.45 2.998 (4) 125
O2—H2⋯N2i 0.82 2.20 2.992 (4) 164
N1—H1⋯O2 0.86 2.12 2.715 (4) 126
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their metal complexes were reported to exhibit fungicidal, bactericidal, antiviral, and antitubercular activity (Chakraborty et al., 1996; Jeewoth et al., 1999). Herewith we present the title compound (I), which is a new Shiff base compound.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in similar compounds (Nie et al., 2008; Fun et al., 2008) The C=N (C8=N2) bond length in the molecule is 1.287 (3) Å. Two benzene rings - C2—C7 and C16—C21, respectively - form a dihedral angle of 37.94 (7) °. The amino group is involved in formation of intramolecular N—H···O hydrogen bond (Table 1), while intermolecular O—H···N and O—H···O hydrogen bonds (Table 1) link the molecules into chains running in direction [100].

Related literature top

For related structures, see: Fun et al.(2008); Nie (2008); Seijas et al. (2007). For general background to the biological activity of Schiff bases and their metal complexes, see: Chakraborty et al. (1996); Jeewoth et al. (1999).

Experimental top

Benzoin (5 mmol), benzohydrazide (5 mmol) and methanol (10 ml) were mixed in 50 ml flask. After stirring for 2 h at 373 K, the resulting mixture was recrystalized from methanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C21H18N2O2: C 76.34, H 5.49, N 8.48%; found: C 76.21, H 5.56, N 8.54%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H= 0.82 and C—H = 0.93–0.98 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2U-1.5Ueq of the parent atom. Due to the absence of any significant anomalous scatterers in the molecule, the 1239 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. lThe molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
N'-(2-Hydroxy-1,2-diphenylethylidene)benzohydrazide top
Crystal data top
C21H18N2O2Dx = 1.300 Mg m3
Mr = 330.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1315 reflections
a = 7.7318 (8) Åθ = 2.8–19.7°
b = 11.0653 (12) ŵ = 0.09 mm1
c = 19.725 (2) ÅT = 298 K
V = 1687.5 (3) Å3Needle, colourless
Z = 40.41 × 0.16 × 0.13 mm
F(000) = 696
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1729 independent reflections
Radiation source: fine-focus sealed tube1051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 98
Tmin = 0.966, Tmax = 0.989k = 1313
7865 measured reflectionsl = 1023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2666P]
where P = (Fo2 + 2Fc2)/3
1729 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H18N2O2V = 1687.5 (3) Å3
Mr = 330.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7318 (8) ŵ = 0.09 mm1
b = 11.0653 (12) ÅT = 298 K
c = 19.725 (2) Å0.41 × 0.16 × 0.13 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1729 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1051 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.989Rint = 0.054
7865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
1729 reflectionsΔρmin = 0.16 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6095 (4)0.7285 (3)0.07224 (14)0.0466 (9)
H10.57110.65820.08330.056*
N20.6267 (4)0.7612 (3)0.00542 (16)0.0445 (9)
O10.7060 (4)0.9121 (2)0.10546 (13)0.0550 (8)
O20.3956 (3)0.5524 (2)0.02563 (13)0.0547 (8)
H20.31610.59390.01100.082*
C10.6551 (5)0.8107 (4)0.1207 (2)0.0441 (10)
C20.6408 (5)0.7712 (3)0.19238 (19)0.0424 (10)
C30.5837 (6)0.6586 (4)0.2127 (2)0.0538 (12)
H30.54850.60250.18050.065*
C40.5787 (6)0.6288 (4)0.2806 (2)0.0634 (13)
H40.53850.55310.29390.076*
C50.6324 (6)0.7097 (4)0.3285 (2)0.0638 (13)
H50.63090.68900.37420.077*
C60.6885 (7)0.8213 (4)0.3087 (2)0.0666 (14)
H60.72300.87740.34100.080*
C70.6939 (5)0.8510 (4)0.2408 (2)0.0543 (11)
H70.73440.92670.22790.065*
C80.5919 (5)0.6798 (3)0.03926 (18)0.0416 (10)
C90.5351 (5)0.5513 (3)0.0227 (2)0.0443 (10)
H90.49360.51320.06450.053*
C100.6779 (5)0.4743 (3)0.00625 (18)0.0404 (10)
C110.8474 (5)0.4869 (3)0.0146 (2)0.0513 (11)
H110.87590.54740.04530.062*
C120.9764 (6)0.4104 (4)0.0096 (2)0.0650 (13)
H121.09000.41970.00500.078*
C130.9345 (7)0.3213 (4)0.0551 (2)0.0692 (14)
H131.01990.26970.07140.083*
C140.7678 (7)0.3084 (4)0.0766 (3)0.0781 (15)
H140.74010.24840.10770.094*
C150.6399 (6)0.3839 (4)0.0523 (2)0.0622 (12)
H150.52670.37390.06720.075*
C160.6030 (5)0.7188 (3)0.11073 (19)0.0414 (10)
C170.6508 (6)0.6403 (4)0.16168 (19)0.0547 (11)
H170.67670.56040.15120.066*
C180.6607 (6)0.6793 (4)0.2285 (2)0.0632 (13)
H180.69500.62620.26240.076*
C190.6194 (6)0.7971 (4)0.2443 (2)0.0664 (14)
H190.62520.82350.28900.080*
C200.5702 (6)0.8749 (4)0.1946 (2)0.0565 (12)
H200.54150.95430.20530.068*
C210.5628 (5)0.8365 (3)0.1283 (2)0.0511 (11)
H210.53010.89070.09470.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (3)0.0403 (18)0.038 (2)0.0013 (18)0.0013 (18)0.0009 (16)
N20.053 (2)0.0448 (18)0.0352 (18)0.0040 (18)0.0059 (17)0.0001 (15)
O10.066 (2)0.0506 (16)0.0487 (17)0.0063 (15)0.0034 (16)0.0039 (15)
O20.0445 (17)0.0555 (16)0.0642 (18)0.0006 (14)0.0037 (16)0.0091 (14)
C10.040 (2)0.045 (3)0.047 (3)0.007 (2)0.001 (2)0.001 (2)
C20.040 (3)0.050 (2)0.037 (2)0.001 (2)0.000 (2)0.005 (2)
C30.064 (3)0.050 (3)0.048 (3)0.004 (2)0.004 (2)0.000 (2)
C40.074 (4)0.064 (3)0.052 (3)0.009 (3)0.001 (3)0.015 (3)
C50.073 (4)0.072 (3)0.047 (3)0.005 (3)0.001 (3)0.012 (3)
C60.090 (4)0.064 (3)0.045 (3)0.000 (3)0.003 (3)0.005 (2)
C70.060 (3)0.054 (3)0.050 (3)0.002 (2)0.005 (2)0.000 (2)
C80.046 (3)0.039 (2)0.040 (2)0.003 (2)0.001 (2)0.002 (2)
C90.043 (2)0.047 (2)0.043 (2)0.005 (2)0.002 (2)0.000 (2)
C100.043 (2)0.041 (2)0.037 (2)0.0017 (19)0.006 (2)0.004 (2)
C110.051 (3)0.045 (2)0.057 (3)0.003 (2)0.000 (3)0.002 (2)
C120.056 (3)0.059 (3)0.080 (3)0.002 (3)0.012 (3)0.012 (3)
C130.067 (4)0.063 (3)0.078 (3)0.015 (3)0.029 (3)0.003 (3)
C140.080 (4)0.079 (4)0.075 (3)0.006 (3)0.013 (3)0.028 (3)
C150.059 (3)0.070 (3)0.057 (3)0.001 (3)0.002 (3)0.018 (3)
C160.042 (3)0.043 (2)0.040 (2)0.001 (2)0.004 (2)0.000 (2)
C170.064 (3)0.051 (2)0.049 (2)0.004 (3)0.002 (2)0.002 (2)
C180.075 (3)0.067 (3)0.047 (3)0.014 (3)0.007 (3)0.005 (3)
C190.070 (3)0.084 (4)0.045 (3)0.015 (3)0.000 (3)0.008 (3)
C200.064 (3)0.056 (3)0.049 (3)0.006 (3)0.002 (2)0.015 (2)
C210.057 (3)0.049 (3)0.047 (3)0.003 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
N1—C11.366 (4)C10—C111.380 (5)
N1—N21.373 (4)C10—C151.383 (5)
N1—H10.8600C11—C121.392 (5)
N2—C81.288 (4)C11—H110.9300
O1—C11.226 (4)C12—C131.372 (6)
O2—C91.439 (4)C12—H120.9300
O2—H20.8200C13—C141.365 (7)
C1—C21.485 (5)C13—H130.9300
C2—C71.365 (5)C14—C151.379 (6)
C2—C31.381 (5)C14—H140.9300
C3—C41.380 (5)C15—H150.9300
C3—H30.9300C16—C171.379 (5)
C4—C51.366 (5)C16—C211.383 (5)
C4—H40.9300C17—C181.389 (5)
C5—C61.366 (6)C17—H170.9300
C5—H50.9300C18—C191.378 (6)
C6—C71.378 (5)C18—H180.9300
C6—H60.9300C19—C201.359 (5)
C7—H70.9300C19—H190.9300
C8—C161.477 (5)C20—C211.375 (5)
C8—C91.524 (5)C20—H200.9300
C9—C101.507 (5)C21—H210.9300
C9—H90.9800
C1—N1—N2118.1 (3)C11—C10—C9121.7 (3)
C1—N1—H1121.0C15—C10—C9120.1 (4)
N2—N1—H1121.0C10—C11—C12121.1 (4)
C8—N2—N1116.9 (3)C10—C11—H11119.4
C9—O2—H2109.5C12—C11—H11119.4
O1—C1—N1121.4 (4)C13—C12—C11119.4 (4)
O1—C1—C2121.8 (4)C13—C12—H12120.3
N1—C1—C2116.8 (4)C11—C12—H12120.3
C7—C2—C3118.4 (4)C14—C13—C12120.1 (4)
C7—C2—C1117.0 (3)C14—C13—H13120.0
C3—C2—C1124.5 (4)C12—C13—H13120.0
C4—C3—C2120.4 (4)C13—C14—C15120.4 (4)
C4—C3—H3119.8C13—C14—H14119.8
C2—C3—H3119.8C15—C14—H14119.8
C5—C4—C3120.3 (4)C14—C15—C10120.9 (4)
C5—C4—H4119.8C14—C15—H15119.6
C3—C4—H4119.8C10—C15—H15119.6
C4—C5—C6119.5 (4)C17—C16—C21118.1 (4)
C4—C5—H5120.3C17—C16—C8121.8 (3)
C6—C5—H5120.3C21—C16—C8120.1 (3)
C5—C6—C7120.2 (4)C16—C17—C18120.7 (4)
C5—C6—H6119.9C16—C17—H17119.7
C7—C6—H6119.9C18—C17—H17119.7
C2—C7—C6121.1 (4)C19—C18—C17119.7 (4)
C2—C7—H7119.5C19—C18—H18120.1
C6—C7—H7119.5C17—C18—H18120.1
N2—C8—C16115.9 (3)C20—C19—C18120.1 (4)
N2—C8—C9124.4 (3)C20—C19—H19120.0
C16—C8—C9119.6 (3)C18—C19—H19120.0
O2—C9—C10107.7 (3)C19—C20—C21120.1 (4)
O2—C9—C8110.5 (3)C19—C20—H20120.0
C10—C9—C8113.5 (3)C21—C20—H20120.0
O2—C9—H9108.4C20—C21—C16121.3 (4)
C10—C9—H9108.4C20—C21—H21119.3
C8—C9—H9108.4C16—C21—H21119.3
C11—C10—C15118.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.452.998 (4)125
O2—H2···N2i0.822.202.992 (4)164
N1—H1···O20.862.122.715 (4)126
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC21H18N2O2
Mr330.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.7318 (8), 11.0653 (12), 19.725 (2)
V3)1687.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.966, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7865, 1729, 1051
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.07
No. of reflections1729
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.452.998 (4)125.2
O2—H2···N2i0.822.202.992 (4)163.9
N1—H1···O20.862.122.715 (4)125.7
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

The author acknowledges financial support by the Foundation of Binzhou University (grant No. BZXYQNLG­2005013).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191–195.  CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445–448.  Web of Science CrossRef CAS Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o303–o305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds