metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1281-m1282

Bis(di-2-pyridyl­methane­diol-κ3N,O,N′)nickel(II) dibenzoate

aDepartment of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest Resources Development, Korea Forest Research Institute, Suwon 441-350, Republic of Korea, cDepartment of Forest & Environment Resources, Kyungpook National University, Sangju,742-711, Republic of Korea, and dDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 8 September 2010; accepted 14 September 2010; online 18 September 2010)

The title compound, [Ni(C11H10N2O2)2](C7H5O2)2, consists of an NiII ion coordinated by two tridentate chelating (2-py)2C(OH)2 ligands (py is pyrid­yl) and two benzoate anions. The NiII ion is located on a twofold rotation axis, and its geometry is distorted octa­hedral. The gem-diol ligand (2-py)2C(OH)2 adopts an η1:η1:η1 coordination mode. There are O—H⋯O hydrogen bonds between the gem-diol ligands and benzoate anions.

Related literature

For examples of inter­actions between transition metal ions and biologically active mol­ecules, see: Efthymiou et al. (2006[Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boča, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. pp. 2236-2252.]); Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]). For related structures of Cu(II) and Zn(II) benzoates, see: Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Yu et al. (2008[Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881-m882.]); Park et al. (2008[Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.]); Shin et al. (2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Yu et al. (2010[Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61-m62.]). For the di-2-pyridyl­ketone [(py)2CO] ligand, see: Papaefstathiou & Perlepes (2002[Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249-274.]); Stoumpos et al. (2009[Stoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307-317.]). For related structures, see: Wang et al. (1986[Wang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67-72.]); Li et al. (2005[Li, C.-J., Li, W., Tong, M.-L. & Ng, S. W. (2005). Acta Cryst. E61, m229-m231.]); Yu et al. (2009a[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009a). Acta Cryst. E65, m1045-m1046.],b[Yu, S. M., Song, Y. J., Kim, K. C., Kim, C. & Kim, Y. (2009b). Acta Cryst. E65, m678-m679.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H10N2O2)2](C7H5O2)2

  • Mr = 705.35

  • Monoclinic, C 2/c

  • a = 24.065 (8) Å

  • b = 8.681 (3) Å

  • c = 17.718 (6) Å

  • β = 123.526 (5)°

  • V = 3085.7 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.08 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.966

  • 8329 measured reflections

  • 3031 independent reflections

  • 1818 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.109

  • S = 1.01

  • 3031 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O21 0.84 1.70 2.537 (3) 171
O2—H2O⋯O22 0.84 1.79 2.615 (4) 167

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, fulvic acids and humic acids is of great importance in the biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva and Lippard, 2004). As models to examine the interaction, the study on the interaction of the transition metal ions with various acids such as benzoic acid has been intensively examined. Our group have also reported a variety of structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al.,2009; Yu, et al., 2009a,b; Yu, et al.,2010).

Di-2-pyridyl ketone ((py)2CO) has been employed to form structurally interesting new complexes with 3 d-metal ions (Stoumpos, et al., 2009). While the neutral ligands (py)2C(OH)2 and (py)2C(OR)(OH) coordinate to the metal centres as N,N',O chelates (Papaefstathiou and Perlepes, 2002), water and alcohols (ROH) have been shown to add to the carbonyl group forming the ligands (2-py)2C(OH)2 [the gem-diol form of (2-py)2CO] and (2-py)2C(OR)(OH) [the hemiacetal form of (2-py)2CO], respectively (Efthymiou et al., 2006). The Ni(II) complexes of the neutral ligand, (py)2C(OH)2 have been characterized (Wang, et al., 1986; Li, et al., 2005; Yu, et al., 2009a,b), but no structure with a benzoate ion as the counter-ion has been reported. We report here another structure of NiII benzoate containing a neutral ligand (2-py)2C(OH)2.

The NiII atom is coordinated by two tridentate chelating (2-py)2C(OH)2 ligand to form a distorted octahedral geometry. The NiII ion is located on a two fold axis. The gem-diol ligand (2-py)2C(OH)2 adopts the coordination mode η1:η1:η1 (Fig.1). There are hydrogen bonds between the gem-diol hydrogen atoms and benzoate oxygen atoms.

Related literature top

For examples of interactions between transition metal ions and biologically active molecules, see: Efthymiou et al. (2006); Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related structures of Cu(II) and Zn(II) benzoates, see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al. (2009); Yu et al. (2010). For the di-2-pyridylketone [(py)2CO] ligand, see: Papaefstathiou & Perlepes (2002); Stoumpos et al. (2009). For related structures, see; Wang et al. (1986); Li et al. (2005); Yu et al. (2009a,b).

Experimental top

36.4 mg (0.125 mmol) of Ni(NO3)2.6H2O and 35.5 mg (0.25 mmol) of C6H5COONH4 were dissolved in 4 ml water and carefully layered by 4 ml solution of a mixture of acetone, methanol and ethanol (1/1/1) of di-2-pyridyl ketone ligand (46.1 mg, 0.25 mmol). Suitable crystals of the title compoundfor X-ray analysis were obtained in a month.

Refinement top

H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H distances of 0.93 Å (phenyl) and 0.84 Å (hydroxyl) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title complex with labeling scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are represented as small sphere of arbitrary radii and hydrogen bonds are shown as dashed line [Symmetry code: (i) -x+1, y, -z+3/2]
Bis(di-2-pyridylmethanediol-κ3N,O,N')nickel(II) dibenzoate top
Crystal data top
[Ni(C11H10N2O2)2](C7H5O2)2F(000) = 1464
Mr = 705.35Dx = 1.518 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 526 reflections
a = 24.065 (8) Åθ = 2.6–18.8°
b = 8.681 (3) ŵ = 0.69 mm1
c = 17.718 (6) ÅT = 173 K
β = 123.526 (5)°Block, colourless
V = 3085.7 (17) Å30.08 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3031 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2928
Tmin = 0.959, Tmax = 0.966k = 109
8329 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
3031 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C11H10N2O2)2](C7H5O2)2V = 3085.7 (17) Å3
Mr = 705.35Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.065 (8) ŵ = 0.69 mm1
b = 8.681 (3) ÅT = 173 K
c = 17.718 (6) Å0.08 × 0.05 × 0.05 mm
β = 123.526 (5)°
Data collection top
Bruker SMART CCD
diffractometer
3031 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1818 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.966Rint = 0.095
8329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
3031 reflectionsΔρmin = 0.34 e Å3
222 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.54475 (8)0.75000.0218 (2)
O10.42807 (11)0.6969 (3)0.74041 (15)0.0272 (6)
H1O0.42940.71800.78770.041*
O20.31141 (11)0.6882 (3)0.65747 (15)0.0311 (7)
H2O0.30950.69160.70340.047*
N10.43794 (14)0.3935 (4)0.75897 (18)0.0240 (8)
N20.43061 (13)0.5602 (3)0.61309 (17)0.0224 (7)
C10.45080 (19)0.2545 (5)0.7972 (2)0.0295 (10)
H10.49450.21350.82500.035*
C20.4030 (2)0.1682 (5)0.7979 (2)0.0340 (10)
H20.41360.06960.82570.041*
C30.33914 (19)0.2273 (5)0.7573 (2)0.0336 (10)
H30.30530.16960.75640.040*
C40.32564 (18)0.3714 (5)0.7182 (2)0.0282 (10)
H40.28230.41470.69040.034*
C50.37576 (16)0.4519 (5)0.7200 (2)0.0231 (9)
C60.36850 (16)0.6119 (4)0.6785 (2)0.0244 (9)
C70.36976 (17)0.5939 (4)0.5939 (2)0.0215 (9)
C80.31530 (18)0.6127 (4)0.5068 (2)0.0278 (9)
H80.27250.63450.49490.033*
C90.32512 (19)0.5986 (4)0.4372 (2)0.0306 (10)
H90.28860.61170.37630.037*
C100.38729 (18)0.5658 (5)0.4555 (2)0.0326 (10)
H100.39440.55660.40810.039*
C110.43897 (17)0.5467 (5)0.5446 (2)0.0286 (9)
H110.48210.52300.55800.034*
O210.42695 (12)0.7889 (3)0.87550 (16)0.0364 (7)
O220.31909 (12)0.7353 (3)0.80877 (16)0.0409 (8)
C210.3730 (2)0.7889 (5)0.8723 (3)0.0306 (10)
C220.37566 (18)0.8581 (5)0.9521 (2)0.0272 (9)
C230.33218 (19)0.8072 (5)0.9755 (3)0.0329 (10)
H230.30110.72770.94110.039*
C240.3337 (2)0.8705 (5)1.0476 (3)0.0382 (11)
H240.30410.83391.06320.046*
C250.3776 (2)0.9862 (5)1.0971 (3)0.0396 (11)
H250.37761.03121.14590.047*
C260.42184 (18)1.0377 (5)1.0767 (3)0.0356 (10)
H260.45271.11701.11190.043*
C270.42110 (18)0.9730 (5)1.0042 (3)0.0342 (10)
H270.45191.00770.99030.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0214 (4)0.0260 (4)0.0186 (4)0.0000.0115 (3)0.000
O10.0272 (14)0.0340 (17)0.0230 (13)0.0008 (13)0.0155 (12)0.0029 (13)
O20.0259 (15)0.0429 (19)0.0280 (14)0.0089 (13)0.0170 (12)0.0053 (13)
N10.0235 (18)0.029 (2)0.0212 (16)0.0028 (15)0.0131 (14)0.0027 (15)
N20.0260 (17)0.0239 (19)0.0186 (15)0.0032 (15)0.0131 (13)0.0025 (15)
C10.034 (2)0.032 (3)0.021 (2)0.003 (2)0.0150 (18)0.006 (2)
C20.045 (3)0.031 (3)0.028 (2)0.001 (2)0.021 (2)0.005 (2)
C30.039 (3)0.038 (3)0.027 (2)0.016 (2)0.020 (2)0.005 (2)
C40.027 (2)0.035 (3)0.023 (2)0.003 (2)0.0144 (18)0.007 (2)
C50.024 (2)0.029 (2)0.0179 (18)0.003 (2)0.0125 (16)0.0023 (19)
C60.0156 (19)0.031 (2)0.022 (2)0.0003 (17)0.0067 (16)0.0016 (19)
C70.023 (2)0.020 (2)0.023 (2)0.0006 (16)0.0138 (17)0.0000 (16)
C80.026 (2)0.027 (2)0.027 (2)0.0004 (18)0.0124 (18)0.0006 (19)
C90.037 (2)0.033 (3)0.0168 (19)0.0050 (19)0.0116 (18)0.0022 (18)
C100.040 (2)0.037 (3)0.024 (2)0.007 (2)0.0197 (19)0.002 (2)
C110.030 (2)0.031 (2)0.026 (2)0.005 (2)0.0168 (17)0.001 (2)
O210.0333 (16)0.044 (2)0.0411 (16)0.0030 (14)0.0264 (13)0.0072 (14)
O220.0316 (17)0.062 (2)0.0295 (15)0.0064 (15)0.0172 (13)0.0119 (15)
C210.034 (2)0.032 (3)0.036 (2)0.004 (2)0.025 (2)0.004 (2)
C220.028 (2)0.031 (3)0.027 (2)0.0065 (19)0.0184 (18)0.003 (2)
C230.037 (2)0.032 (3)0.036 (2)0.002 (2)0.024 (2)0.002 (2)
C240.046 (3)0.046 (3)0.032 (2)0.002 (2)0.028 (2)0.002 (2)
C250.053 (3)0.039 (3)0.033 (2)0.014 (2)0.027 (2)0.003 (2)
C260.039 (2)0.030 (3)0.039 (2)0.002 (2)0.022 (2)0.004 (2)
C270.036 (2)0.034 (3)0.042 (2)0.004 (2)0.028 (2)0.004 (2)
Geometric parameters (Å, º) top
Ni1—N2i2.053 (3)C6—C71.525 (5)
Ni1—N22.053 (3)C7—C81.374 (5)
Ni1—N12.060 (3)C8—C91.383 (5)
Ni1—N1i2.060 (3)C8—H80.9500
Ni1—O1i2.109 (3)C9—C101.374 (5)
Ni1—O12.109 (2)C9—H90.9500
O1—C61.437 (4)C10—C111.377 (5)
O1—H1O0.8408C10—H100.9500
O2—C61.378 (4)C11—H110.9500
O2—H2O0.8405O21—C211.267 (4)
N1—C11.334 (4)O22—C211.247 (4)
N1—C51.353 (4)C21—C221.506 (5)
N2—C71.340 (4)C22—C271.388 (5)
N2—C111.340 (4)C22—C231.393 (5)
C1—C21.379 (5)C23—C241.373 (5)
C1—H10.9500C23—H230.9500
C2—C31.385 (5)C24—C251.368 (5)
C2—H20.9500C24—H240.9500
C3—C41.379 (5)C25—C261.373 (5)
C3—H30.9500C25—H250.9500
C4—C51.379 (5)C26—C271.393 (5)
C4—H40.9500C26—H260.9500
C5—C61.535 (5)C27—H270.9500
N2i—Ni1—N2172.49 (18)O2—C6—C7110.0 (3)
N2i—Ni1—N195.84 (11)O1—C6—C7104.5 (3)
N2—Ni1—N188.95 (11)O2—C6—C5113.4 (3)
N2i—Ni1—N1i88.95 (11)O1—C6—C5107.3 (3)
N2—Ni1—N1i95.84 (11)C7—C6—C5108.6 (3)
N1—Ni1—N1i100.79 (17)N2—C7—C8122.8 (3)
N2i—Ni1—O1i76.59 (10)N2—C7—C6112.6 (3)
N2—Ni1—O1i98.62 (10)C8—C7—C6124.5 (3)
N1—Ni1—O1i172.42 (10)C7—C8—C9117.6 (4)
N1i—Ni1—O1i78.91 (11)C7—C8—H8121.2
N2i—Ni1—O198.62 (10)C9—C8—H8121.2
N2—Ni1—O176.59 (10)C10—C9—C8120.5 (3)
N1—Ni1—O178.91 (11)C10—C9—H9119.7
N1i—Ni1—O1172.42 (10)C8—C9—H9119.7
O1i—Ni1—O1102.40 (14)C9—C10—C11118.1 (3)
C6—O1—Ni199.7 (2)C9—C10—H10120.9
C6—O1—H1O110.2C11—C10—H10120.9
Ni1—O1—H1O118.6N2—C11—C10122.3 (3)
C6—O2—H2O109.5N2—C11—H11118.8
C1—N1—C5118.7 (3)C10—C11—H11118.8
C1—N1—Ni1129.9 (2)O22—C21—O21124.8 (4)
C5—N1—Ni1111.5 (3)O22—C21—C22118.6 (3)
C7—N2—C11118.6 (3)O21—C21—C22116.6 (3)
C7—N2—Ni1112.1 (2)C27—C22—C23118.4 (4)
C11—N2—Ni1129.3 (2)C27—C22—C21121.3 (3)
N1—C1—C2122.4 (4)C23—C22—C21120.2 (4)
N1—C1—H1118.8C24—C23—C22120.7 (4)
C2—C1—H1118.8C24—C23—H23119.6
C1—C2—C3119.0 (4)C22—C23—H23119.6
C1—C2—H2120.5C25—C24—C23120.2 (4)
C3—C2—H2120.5C25—C24—H24119.9
C4—C3—C2118.9 (4)C23—C24—H24119.9
C4—C3—H3120.6C24—C25—C26120.6 (4)
C2—C3—H3120.6C24—C25—H25119.7
C3—C4—C5119.2 (4)C26—C25—H25119.7
C3—C4—H4120.4C25—C26—C27119.6 (4)
C5—C4—H4120.4C25—C26—H26120.2
N1—C5—C4121.9 (4)C27—C26—H26120.2
N1—C5—C6112.7 (3)C22—C27—C26120.4 (4)
C4—C5—C6125.5 (3)C22—C27—H27119.8
O2—C6—O1112.6 (3)C26—C27—H27119.8
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O210.841.702.537 (3)171
O2—H2O···O220.841.792.615 (4)167

Experimental details

Crystal data
Chemical formula[Ni(C11H10N2O2)2](C7H5O2)2
Mr705.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)24.065 (8), 8.681 (3), 17.718 (6)
β (°) 123.526 (5)
V3)3085.7 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.08 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.959, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
8329, 3031, 1818
Rint0.095
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.109, 1.01
No. of reflections3031
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O210.841.702.537 (3)170.7
O2—H2O···O220.841.792.615 (4)166.5
 

Acknowledgements

Financial support from the Korea Ministry of the Environment `ET-Human resource development Project' and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationEfthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boča, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. pp. 2236–2252.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-J., Li, W., Tong, M.-L. & Ng, S. W. (2005). Acta Cryst. E61, m229–m231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPapaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249–274.  Web of Science CrossRef CAS Google Scholar
First citationPark, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307–317.  Web of Science CSD CrossRef Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67–72.  CAS Google Scholar
First citationYu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009a). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Song, Y. J., Kim, K. C., Kim, C. & Kim, Y. (2009b). Acta Cryst. E65, m678–m679.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1281-m1282
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds