metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1217-m1218

Chlorido[tris­­(3-fluoro­phen­yl)phosphine]gold(I)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 18 August 2010; accepted 30 August 2010; online 8 September 2010)

In the title gold complex, [AuCl(C18H12F3P)], the P—Au—Cl unit is nearly linear, with an angle of 178.13 (5)°. The three phosphine-substituted benzene rings make dihedral angles of 77.7 (3), 84.4 (3) and 77.4 (3)° with each other. Two of the three F atoms are disordered over two positions, with refined site occupancies of 0.591 (11):0.409 (11) and 0.730 (12):0.270 (12). In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular C—H⋯Cl and C—H⋯F hydrogen bonds.

Related literature

For general background to gold complex derivatives, see: Tiekink (2002[Tiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225-248.]); Dyadchenko (1982[Dyadchenko, V. P. (1982). Russ. Chem. Rev. 51, 265-271.]); Baenziger et al. (1976[Baenziger, N. C., Bennett, W. E. & Soborofe, D. M. (1976). Acta Cryst. B32, 962-963.]); Chen & Tiekink (2003[Chen, H. W. & Tiekink, E. R. T. (2003). Acta Cryst. E59, m50-m52.]). For the synthesis, see: Francis (1901[Francis, C. P. (1901). J. Am. Chem. Soc. 23, 250-258.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl(C18H12F3P)]

  • Mr = 548.66

  • Orthorhombic, P 21 21 21

  • a = 10.4028 (8) Å

  • b = 12.3281 (11) Å

  • c = 13.2214 (10) Å

  • V = 1695.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.95 mm−1

  • T = 100 K

  • 0.50 × 0.13 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.094, Tmax = 0.520

  • 14491 measured reflections

  • 5912 independent reflections

  • 5263 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.084

  • S = 1.06

  • 5912 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.87 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2522 Friedel pairs

  • Flack parameter: 0.010 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Cl1i 0.93 2.81 3.663 (6) 153
C5—H5A⋯Cl1ii 0.93 2.83 3.558 (7) 136
C10—H10A⋯F1iii 0.93 2.41 3.046 (8) 126
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Gold complexes are well known for their medicinal (Tiekink, 2002) and catalytic activities (Dyadchenko, 1982). Phosphinegold(I) forms an important class of compounds of gold (Baenziger et al., 1976). Chloro[tris(perflourophenyl)phospine]gold(I) is a known complex which is conveniently prepared and characterized (Chen & Tiekink, 2003). Keeping in mind the importance of the phosphine gold complexes, we have prepared the title complex and reported the crystal structure of the title complex.

In the title compound (Fig. 1), the P1–Au1–Cl1 is linear with an angle of 178.13 (5)°. The three phosphine substituted benzene rings (C1–C6, C7–C12 and C13–C18) make dihedral angles of 77.7 (3), 84.4 (3) and 77.4 (3)° with each other (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18). In the crystal structure, the molecules are linked into a three-dimensional network by intermolecular C4—H4A···Cl1, C5—H5A···Cl1 and C10—H10A···F1 hydrogen bonds (Fig. 2, Table 1).

Related literature top

For general background to gold complex derivatives, see: Tiekink (2002); Dyadchenko (1982); Baenziger et al. (1976); Chen & Tiekink (2003). For the synthesis, see: Francis (1901). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared from the reaction between Me2SAuCl (Francis, 1901) and (m-FC6H4)3P (Maybridge) in a 1:1 molar ratio in CH2Cl2 at room temperature. Solution was stirred for two hours, solvent was removed under vacuum, and white crystalline solid was obtained. The colorless crystals were obtained in 90% yield from the concentrated solution of the compound (m.p. 193 °C, decomposition) in ethanol kept for few days at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model. Two out of the three flourine atoms were disordered over two positions with refined site occupancies of 0.591 (11)/409 (11) and 0.730 (12)/0.270 (12). The maximum and minimum residual electron density peaks of 1.25 and -0.87 e Å-3, respectively, were located 0.79 and 0.65 Å from the Au1 atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into a 3-D network. Hydrogen atoms that not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity.
Chlorido[tris(3-fluorophenyl)phosphine]gold(I) top
Crystal data top
[AuCl(C18H12F3P)]F(000) = 1032
Mr = 548.66Dx = 2.149 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7065 reflections
a = 10.4028 (8) Åθ = 3.0–34.8°
b = 12.3281 (11) ŵ = 8.95 mm1
c = 13.2214 (10) ÅT = 100 K
V = 1695.6 (2) Å3Block, colourless
Z = 40.50 × 0.13 × 0.08 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5912 independent reflections
Radiation source: fine-focus sealed tube5263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.094, Tmax = 0.520k = 1818
14491 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0362P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5912 reflectionsΔρmax = 1.25 e Å3
237 parametersΔρmin = 0.87 e Å3
0 restraintsAbsolute structure: Flack (1983), 2522 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (8)
Crystal data top
[AuCl(C18H12F3P)]V = 1695.6 (2) Å3
Mr = 548.66Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.4028 (8) ŵ = 8.95 mm1
b = 12.3281 (11) ÅT = 100 K
c = 13.2214 (10) Å0.50 × 0.13 × 0.08 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5263 reflections with I > 2σ(I)
Tmin = 0.094, Tmax = 0.520Rint = 0.031
14491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.084Δρmax = 1.25 e Å3
S = 1.06Δρmin = 0.87 e Å3
5912 reflectionsAbsolute structure: Flack (1983), 2522 Friedel pairs
237 parametersAbsolute structure parameter: 0.010 (8)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.172736 (12)0.064703 (12)0.248330 (12)0.02814 (5)
Cl10.37503 (10)0.00469 (13)0.21314 (9)0.0430 (3)
P10.02323 (11)0.12844 (9)0.28033 (8)0.02683 (19)
F10.1479 (5)0.4535 (3)0.5012 (3)0.0647 (11)
F2A0.3891 (5)0.3156 (6)0.0912 (4)0.0506 (19)0.591 (11)
F3A0.3834 (5)0.0758 (4)0.4689 (4)0.0577 (17)0.730 (12)
F2B0.0532 (9)0.3838 (8)0.0232 (7)0.057 (3)0.409 (11)
F3B0.2739 (12)0.1835 (13)0.1292 (11)0.058 (5)0.270 (12)
C10.0268 (5)0.2072 (4)0.3955 (3)0.0314 (8)
C20.0940 (5)0.3051 (4)0.4037 (4)0.0339 (9)
H2A0.14300.33130.35020.041*
C30.0859 (6)0.3613 (5)0.4928 (4)0.0415 (11)
C40.0171 (5)0.3264 (5)0.5753 (4)0.0403 (11)
H4A0.01390.36700.63450.048*
C50.0473 (7)0.2285 (6)0.5669 (4)0.0503 (14)
H5A0.09160.20090.62220.060*
C60.0460 (5)0.1720 (6)0.4773 (4)0.0423 (12)
H6A0.09480.10910.47130.051*
C70.0838 (4)0.2165 (4)0.1821 (3)0.0292 (8)
C80.2166 (5)0.2331 (4)0.1705 (4)0.0369 (10)
H8A0.27590.19800.21180.044*
C90.2563 (5)0.3051 (5)0.0936 (4)0.0412 (11)
H9A0.34360.31950.08630.049*0.409 (11)
C100.1742 (7)0.3530 (5)0.0314 (4)0.0493 (15)
H10A0.20390.39800.01990.059*
C110.0419 (6)0.3350 (4)0.0439 (4)0.0398 (11)
H11A0.01640.36930.00120.048*0.591 (11)
C120.0014 (4)0.2683 (4)0.1172 (4)0.0362 (10)
H12A0.08930.25690.12440.043*
C130.1464 (4)0.0259 (4)0.2926 (3)0.0308 (8)
C140.2201 (5)0.0134 (4)0.3816 (4)0.0360 (10)
H14A0.20750.05770.43770.043*
C150.3122 (5)0.0682 (5)0.3812 (4)0.0434 (12)
H15A0.36210.07690.43900.052*0.270 (12)
C160.3342 (5)0.1358 (5)0.3023 (5)0.0448 (12)
H16A0.39830.18830.30570.054*
C170.2581 (5)0.1250 (5)0.2156 (5)0.0428 (11)
H17A0.27060.17140.16100.051*0.730 (12)
C180.1647 (5)0.0455 (5)0.2107 (4)0.0377 (10)
H18A0.11380.03920.15320.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02793 (7)0.02848 (8)0.02799 (7)0.00558 (5)0.00235 (8)0.00385 (9)
Cl10.0336 (5)0.0533 (7)0.0421 (5)0.0160 (5)0.0050 (4)0.0161 (6)
P10.0275 (4)0.0269 (5)0.0262 (4)0.0036 (4)0.0003 (4)0.0018 (4)
F10.091 (3)0.047 (2)0.0557 (19)0.034 (2)0.014 (2)0.0163 (18)
F2A0.048 (3)0.053 (4)0.051 (3)0.020 (3)0.014 (2)0.004 (3)
F3A0.067 (4)0.045 (3)0.061 (3)0.003 (2)0.026 (3)0.004 (2)
F2B0.062 (6)0.058 (6)0.050 (5)0.017 (5)0.006 (4)0.036 (4)
F3B0.050 (7)0.061 (9)0.064 (8)0.020 (6)0.001 (6)0.043 (8)
C10.0306 (17)0.034 (2)0.0297 (18)0.0007 (19)0.0011 (16)0.0077 (17)
C20.044 (2)0.027 (2)0.0308 (19)0.004 (2)0.0000 (17)0.0008 (19)
C30.049 (3)0.035 (3)0.040 (2)0.006 (2)0.006 (2)0.005 (2)
C40.045 (2)0.042 (3)0.034 (2)0.006 (2)0.0003 (19)0.010 (2)
C50.055 (3)0.062 (4)0.034 (2)0.005 (3)0.006 (2)0.010 (3)
C60.042 (3)0.052 (3)0.032 (2)0.011 (2)0.0030 (19)0.002 (2)
C70.0319 (18)0.030 (2)0.0260 (17)0.0060 (16)0.0048 (14)0.0041 (16)
C80.034 (2)0.038 (2)0.039 (2)0.009 (2)0.0085 (18)0.002 (2)
C90.046 (3)0.042 (3)0.036 (2)0.014 (2)0.0097 (19)0.005 (2)
C100.067 (4)0.044 (3)0.036 (2)0.025 (3)0.020 (2)0.012 (2)
C110.057 (3)0.030 (2)0.033 (2)0.001 (2)0.003 (2)0.0019 (19)
C120.039 (3)0.033 (2)0.037 (2)0.0033 (19)0.0061 (17)0.002 (2)
C130.0290 (17)0.030 (2)0.0330 (19)0.0024 (16)0.0018 (15)0.0014 (17)
C140.037 (2)0.032 (2)0.039 (2)0.0041 (19)0.0041 (18)0.003 (2)
C150.037 (2)0.045 (3)0.048 (3)0.005 (2)0.011 (2)0.011 (2)
C160.034 (2)0.036 (3)0.065 (3)0.005 (2)0.001 (2)0.009 (3)
C170.040 (2)0.039 (3)0.050 (3)0.002 (2)0.005 (2)0.013 (2)
C180.036 (2)0.043 (3)0.035 (2)0.001 (2)0.0001 (17)0.001 (2)
Geometric parameters (Å, º) top
Au1—P12.2254 (11)C7—C81.405 (6)
Au1—Cl12.2787 (11)C8—C91.412 (7)
P1—C11.806 (4)C8—H8A0.9300
P1—C71.807 (5)C9—C101.324 (9)
P1—C131.807 (5)C9—H9A0.9300
F1—C31.312 (7)C10—C111.404 (9)
F2A—C91.387 (8)C10—H10A0.9300
F3A—C151.379 (7)C11—C121.348 (7)
F2B—C111.458 (10)C11—H11A0.9300
F3B—C171.360 (12)C12—H12A0.9300
C1—C61.390 (7)C13—C181.409 (7)
C1—C21.399 (7)C13—C141.413 (7)
C2—C31.369 (7)C14—C151.389 (8)
C2—H2A0.9300C14—H14A0.9300
C3—C41.373 (8)C15—C161.355 (9)
C4—C51.385 (9)C15—H15A0.9300
C4—H4A0.9300C16—C171.399 (9)
C5—C61.375 (8)C16—H16A0.9300
C5—H5A0.9300C17—C181.381 (8)
C6—H6A0.9300C17—H17A0.9300
C7—C121.390 (7)C18—H18A0.9300
P1—Au1—Cl1178.13 (5)C8—C9—H9A118.7
C1—P1—C7106.0 (2)C9—C10—C11119.3 (5)
C1—P1—C13106.6 (2)C9—C10—H10A120.3
C7—P1—C13103.7 (2)C11—C10—H10A120.3
C1—P1—Au1111.66 (16)C12—C11—C10120.5 (6)
C7—P1—Au1113.28 (15)C12—C11—F2B117.5 (6)
C13—P1—Au1114.81 (15)C10—C11—F2B121.9 (6)
C6—C1—C2118.8 (5)C12—C11—H11A119.7
C6—C1—P1118.4 (4)C10—C11—H11A119.7
C2—C1—P1122.7 (4)C11—C12—C7120.7 (5)
C3—C2—C1118.2 (5)C11—C12—H12A119.6
C3—C2—H2A120.9C7—C12—H12A119.6
C1—C2—H2A120.9C18—C13—C14119.9 (4)
F1—C3—C2118.7 (5)C18—C13—P1117.7 (3)
F1—C3—C4117.4 (5)C14—C13—P1122.4 (4)
C2—C3—C4123.9 (5)C15—C14—C13116.8 (5)
C3—C4—C5117.4 (5)C15—C14—H14A121.6
C3—C4—H4A121.3C13—C14—H14A121.6
C5—C4—H4A121.3C16—C15—F3A121.0 (5)
C6—C5—C4120.5 (6)C16—C15—C14124.4 (5)
C6—C5—H5A119.8F3A—C15—C14114.7 (6)
C4—C5—H5A119.8C16—C15—H15A117.8
C5—C6—C1121.1 (6)C14—C15—H15A117.8
C5—C6—H6A119.4C15—C16—C17118.5 (5)
C1—C6—H6A119.4C15—C16—H16A120.8
C12—C7—C8119.6 (4)C17—C16—H16A120.8
C12—C7—P1119.8 (3)F3B—C17—C18114.9 (8)
C8—C7—P1120.6 (4)F3B—C17—C16124.7 (8)
C7—C8—C9117.2 (5)C18—C17—C16120.3 (5)
C7—C8—H8A121.4C18—C17—H17A119.9
C9—C8—H8A121.4C16—C17—H17A119.9
C10—C9—F2A125.9 (6)C17—C18—C13120.1 (5)
C10—C9—C8122.6 (5)C17—C18—H18A119.9
F2A—C9—C8111.5 (6)C13—C18—H18A119.9
C10—C9—H9A118.7
C7—P1—C1—C6162.5 (4)F2A—C9—C10—C11179.5 (6)
C13—P1—C1—C687.4 (5)C8—C9—C10—C112.2 (9)
Au1—P1—C1—C638.7 (5)C9—C10—C11—C121.1 (9)
C7—P1—C1—C213.8 (5)C9—C10—C11—F2B178.9 (7)
C13—P1—C1—C296.2 (4)C10—C11—C12—C70.3 (8)
Au1—P1—C1—C2137.6 (4)F2B—C11—C12—C7178.2 (6)
C6—C1—C2—C30.7 (8)C8—C7—C12—C110.6 (8)
P1—C1—C2—C3177.0 (4)P1—C7—C12—C11179.5 (4)
C1—C2—C3—F1179.6 (5)C1—P1—C13—C18178.8 (4)
C1—C2—C3—C41.0 (9)C7—P1—C13—C1867.1 (4)
F1—C3—C4—C5179.3 (6)Au1—P1—C13—C1857.0 (4)
C2—C3—C4—C50.0 (9)C1—P1—C13—C143.4 (5)
C3—C4—C5—C62.9 (10)C7—P1—C13—C14115.1 (4)
C4—C5—C6—C14.6 (10)Au1—P1—C13—C14120.8 (4)
C2—C1—C6—C53.5 (9)C18—C13—C14—C152.6 (7)
P1—C1—C6—C5180.0 (5)P1—C13—C14—C15179.7 (4)
C1—P1—C7—C12100.3 (4)C13—C14—C15—C160.6 (8)
C13—P1—C7—C12147.6 (4)C13—C14—C15—F3A178.7 (5)
Au1—P1—C7—C1222.4 (4)F3A—C15—C16—C17179.5 (5)
C1—P1—C7—C879.8 (4)C14—C15—C16—C171.2 (8)
C13—P1—C7—C832.3 (5)C15—C16—C17—F3B176.5 (10)
Au1—P1—C7—C8157.4 (4)C15—C16—C17—C181.2 (8)
C12—C7—C8—C91.6 (7)F3B—C17—C18—C13175.0 (9)
P1—C7—C8—C9178.5 (4)C16—C17—C18—C130.8 (8)
C7—C8—C9—C102.5 (8)C14—C13—C18—C172.7 (7)
C7—C8—C9—F2A179.0 (5)P1—C13—C18—C17179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cl1i0.932.813.663 (6)153
C5—H5A···Cl1ii0.932.833.558 (7)136
C10—H10A···F1iii0.932.413.046 (8)126
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[AuCl(C18H12F3P)]
Mr548.66
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.4028 (8), 12.3281 (11), 13.2214 (10)
V3)1695.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)8.95
Crystal size (mm)0.50 × 0.13 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.094, 0.520
No. of measured, independent and
observed [I > 2σ(I)] reflections
14491, 5912, 5263
Rint0.031
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.084, 1.06
No. of reflections5912
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.87
Absolute structureFlack (1983), 2522 Friedel pairs
Absolute structure parameter0.010 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cl1i0.932.813.663 (6)153
C5—H5A···Cl1ii0.932.833.558 (7)136
C10—H10A···F1iii0.932.413.046 (8)126
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+1/2, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the University Research Grant 1001/PJJAUH/811115. AT is grateful to USM for a Post-Doctoral Fellowship and HKF and CSY thank USM for the Research University Golden Goose Grant 1001/PFIZIK/811012. CSY also thanks USM for the award of a USM Fellowship.

References

First citationBaenziger, N. C., Bennett, W. E. & Soborofe, D. M. (1976). Acta Cryst. B32, 962–963.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. W. & Tiekink, E. R. T. (2003). Acta Cryst. E59, m50–m52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDyadchenko, V. P. (1982). Russ. Chem. Rev. 51, 265–271.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrancis, C. P. (1901). J. Am. Chem. Soc. 23, 250–258.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225–248.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1217-m1218
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds