metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)tetra­bromidoplatinum(IV)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 23 August 2010; accepted 29 August 2010; online 4 September 2010)

In the title complex, [PtBr4(C10H8N2)], the PtIV ion has a slightly distorted octa­hedral coordination defined by two N atoms of the chelating 2,2′-bipyridine ligand and four bromide ions. As a result of the different trans effects of the N and Br atoms, the Pt—Br bonds trans to the N atom are slightly shorter than those to mutually trans Br atoms. In the crystal structure, the mol­ecules are arranged in a V-shaped packing pattern along the b axis and stacked in columns along the a axis. In the columns, several inter­molecular ππ inter­actions between the pyridine rings are present. The shortest ring centroid–centroid distance is 3.921 (6) Å, with a dihedral angle of 1.6 (5)° between the ring planes. The complexes are connected by C—H⋯Br hydrogen bonds, forming chains along the b axis.

Related literature

For the crystal structure of [PtCl4(bipy)] (bipy = 2,2′-bipyridine), see: Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr4(C10H8N2)]

  • Mr = 670.91

  • Monoclinic, P n

  • a = 8.3146 (7) Å

  • b = 6.9010 (5) Å

  • c = 12.5873 (10) Å

  • β = 102.940 (2)°

  • V = 703.91 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 21.30 mm−1

  • T = 200 K

  • 0.25 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.462, Tmax = 1.000

  • 4282 measured reflections

  • 2257 independent reflections

  • 2128 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.053

  • S = 0.98

  • 2257 reflections

  • 154 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −1.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 714 Friedel pairs

  • Flack parameter: −0.004 (14)

Table 1
Selected bond lengths (Å)

Pt1—N2 2.046 (7)
Pt1—N1 2.048 (7)
Pt1—Br1 2.4412 (10)
Pt1—Br2 2.4442 (10)
Pt1—Br4 2.4595 (11)
Pt1—Br3 2.4756 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br2 0.95 2.73 3.366 (9) 125
C3—H3⋯Br1i 0.95 2.89 3.734 (10) 149
C10—H10⋯Br1 0.95 2.70 3.335 (9) 125
Symmetry code: (i) x+1, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PtBr4(bipy)], is isomorphous with the chloro analogue [PtCl4(bipy)] (Hambley, 1986). The central Pt(IV) ion has a slightly distorted octahedral coordination defined by two N atoms of the chelating 2,2'-bipyridine ligand and four bromide ions (Fig. 1). The main contribution to the distortion of octahedron is the tight N1—Pt1—N2 chelate angle (80.6 (3)°), which results in non-linear trans axes (<Br1—Pt1—N1 = 176.0 (2)°, <Br2—Pt1—N2 = 176.0 (2)° and <Br3—Pt1—Br4 = 177.93 (4)°). As a result of the different trans effects of the N and Br atoms, the Pt—Br bonds trans to the N atom (2.4412 (10) Å and 2.4442 (10) Å) are slightly shorter than bond lengths to mutually trans Br atoms (2.4595 (11) Å and 2.4756 (11) Å) (Table 1). In the crystal structure, the complex molecules are arranged in a V-shaped packing pattern along the b axis and stacked in columns along the a axis (Fig. 2). In the columns, several intermolecular π-π interactions between the pyridine rings are present, with a shortest ring centroid-centroid distance of 3.921 (6) Å, and the dihedral angle between the ring planes is 1.6 (5)°. Moreover, there are intra- and intermolecular hydrogen bonds between the C and Br atoms with d(C···Br) = 3.335 (9) Å–3.734 (10) Å (Table 2). The complexes are connected by the C—H···Br hydrogen bonds, forming one-dimensional chains along the b axis.

Related literature top

For the crystal structure of [PtCl4(bipy)] (bipy = 2,2'-bipyridine), see: Hambley (1986).

Experimental top

To a solution of K2PtBr6 (0.1003 g, 0.133 mmol) in H2O (10 ml) was added 2,2'-bipyridine (0.0210 g, 0.134 mmol), and the mixture was refluxed for 3 h. The formed precipitate was separated by filtration, washed with water, and dried at 50 °C, to give an orange-yellow powder (0.0705 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an N,N-dimethylformamide solution at 50 °C.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.69 e Å-3) and the deepest hole (-1.66 e Å-3) in the difference Fourier map are located 0.96 and 0.96 Å from the Pt1 atom, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Intermolecular hydrogen-bond interactions are drawn with dashed lines.
(2,2'-Bipyridine-κ2N,N')tetrabromidoplatinum(IV) top
Crystal data top
[PtBr4(C10H8N2)]F(000) = 600
Mr = 670.91Dx = 3.165 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 3381 reflections
a = 8.3146 (7) Åθ = 2.7–27.0°
b = 6.9010 (5) ŵ = 21.30 mm1
c = 12.5873 (10) ÅT = 200 K
β = 102.940 (2)°Block, orange
V = 703.91 (10) Å30.25 × 0.12 × 0.08 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
2257 independent reflections
Radiation source: fine-focus sealed tube2128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 810
Tmin = 0.462, Tmax = 1.000k = 88
4282 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0057P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2257 reflectionsΔρmax = 1.69 e Å3
154 parametersΔρmin = 1.66 e Å3
2 restraintsAbsolute structure: Flack (1983), 714 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (14)
Crystal data top
[PtBr4(C10H8N2)]V = 703.91 (10) Å3
Mr = 670.91Z = 2
Monoclinic, PnMo Kα radiation
a = 8.3146 (7) ŵ = 21.30 mm1
b = 6.9010 (5) ÅT = 200 K
c = 12.5873 (10) Å0.25 × 0.12 × 0.08 mm
β = 102.940 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2257 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2128 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 1.000Rint = 0.033
4282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.053Δρmax = 1.69 e Å3
S = 0.98Δρmin = 1.66 e Å3
2257 reflectionsAbsolute structure: Flack (1983), 714 Friedel pairs
154 parametersAbsolute structure parameter: 0.004 (14)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.05995 (4)0.30254 (5)0.15692 (3)0.01371 (9)
Br10.17951 (12)0.09180 (15)0.14380 (8)0.0242 (2)
Br20.05252 (13)0.51205 (15)0.27909 (8)0.0237 (2)
Br30.21931 (13)0.12002 (14)0.31519 (8)0.0232 (2)
Br40.08910 (13)0.48563 (15)0.00258 (8)0.0239 (2)
N10.2650 (9)0.4685 (11)0.1594 (6)0.0155 (18)
N20.1677 (10)0.1400 (11)0.0559 (6)0.0159 (18)
C10.3042 (12)0.6354 (13)0.2127 (8)0.018 (2)
H10.23260.68630.25500.021*
C20.4468 (14)0.7363 (14)0.2081 (9)0.028 (3)
H20.47460.85310.24790.034*
C30.5471 (16)0.6627 (13)0.1441 (11)0.024 (2)
H30.64450.73040.13890.029*
C40.5072 (13)0.4909 (15)0.0873 (9)0.024 (2)
H40.57680.44010.04360.029*
C50.3659 (11)0.3954 (14)0.0951 (8)0.018 (2)
C60.3148 (12)0.2147 (15)0.0401 (8)0.019 (2)
C70.4026 (14)0.1139 (14)0.0252 (8)0.024 (2)
H70.50450.16300.03600.029*
C80.3388 (13)0.0589 (14)0.0740 (8)0.023 (2)
H80.39750.12910.11820.027*
C90.1902 (13)0.1282 (15)0.0583 (8)0.027 (2)
H90.14530.24480.09280.032*
C100.1068 (12)0.0280 (13)0.0075 (8)0.021 (2)
H100.00550.07740.01900.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01098 (16)0.01521 (16)0.01523 (16)0.00154 (17)0.00355 (13)0.00061 (16)
Br10.0181 (6)0.0250 (5)0.0309 (6)0.0078 (5)0.0086 (5)0.0009 (5)
Br20.0231 (6)0.0243 (5)0.0258 (5)0.0033 (5)0.0100 (5)0.0038 (5)
Br30.0224 (6)0.0243 (5)0.0216 (5)0.0040 (5)0.0022 (5)0.0029 (4)
Br40.0193 (5)0.0292 (5)0.0224 (5)0.0006 (5)0.0028 (5)0.0071 (5)
N10.007 (4)0.015 (4)0.022 (4)0.002 (3)0.004 (4)0.001 (3)
N20.016 (5)0.017 (4)0.018 (4)0.003 (3)0.011 (4)0.004 (3)
C10.015 (5)0.018 (5)0.021 (5)0.000 (4)0.006 (5)0.002 (4)
C20.024 (6)0.018 (5)0.039 (7)0.009 (5)0.001 (6)0.001 (5)
C30.010 (5)0.021 (5)0.037 (7)0.005 (5)0.005 (5)0.002 (6)
C40.017 (6)0.019 (5)0.041 (7)0.002 (4)0.014 (5)0.002 (5)
C50.010 (5)0.020 (5)0.022 (5)0.000 (4)0.001 (4)0.006 (4)
C60.014 (5)0.025 (6)0.019 (5)0.005 (4)0.004 (5)0.006 (4)
C70.022 (6)0.027 (6)0.025 (6)0.002 (5)0.010 (5)0.002 (4)
C80.027 (6)0.025 (5)0.017 (5)0.010 (5)0.007 (5)0.003 (4)
C90.030 (6)0.028 (6)0.025 (6)0.004 (5)0.012 (5)0.009 (5)
C100.018 (6)0.018 (5)0.025 (5)0.009 (4)0.001 (5)0.010 (4)
Geometric parameters (Å, º) top
Pt1—N22.046 (7)C3—C41.386 (14)
Pt1—N12.048 (7)C3—H30.9500
Pt1—Br12.4412 (10)C4—C51.370 (13)
Pt1—Br22.4442 (10)C4—H40.9500
Pt1—Br42.4595 (11)C5—C61.443 (14)
Pt1—Br32.4756 (11)C6—C71.401 (13)
N1—C11.336 (11)C7—C81.391 (14)
N1—C51.385 (11)C7—H70.9500
N2—C101.354 (11)C8—C91.380 (14)
N2—C61.382 (12)C8—H80.9500
C1—C21.387 (14)C9—C101.379 (13)
C1—H10.9500C9—H90.9500
C2—C31.380 (17)C10—H100.9500
C2—H20.9500
N2—Pt1—N180.6 (3)C1—C2—H2120.9
N2—Pt1—Br195.5 (2)C2—C3—C4120.7 (11)
N1—Pt1—Br1176.0 (2)C2—C3—H3119.7
N2—Pt1—Br2176.0 (2)C4—C3—H3119.7
N1—Pt1—Br295.4 (2)C5—C4—C3119.0 (10)
Br1—Pt1—Br288.50 (4)C5—C4—H4120.5
N2—Pt1—Br489.1 (2)C3—C4—H4120.5
N1—Pt1—Br489.5 (2)C4—C5—N1120.6 (9)
Br1—Pt1—Br489.80 (4)C4—C5—C6123.1 (9)
Br2—Pt1—Br490.91 (4)N1—C5—C6116.3 (8)
N2—Pt1—Br389.5 (2)N2—C6—C7119.6 (9)
N1—Pt1—Br388.8 (2)N2—C6—C5115.4 (8)
Br1—Pt1—Br391.88 (4)C7—C6—C5125.0 (9)
Br2—Pt1—Br390.34 (4)C8—C7—C6119.2 (10)
Br4—Pt1—Br3177.93 (4)C8—C7—H7120.4
C1—N1—C5119.7 (8)C6—C7—H7120.4
C1—N1—Pt1126.7 (6)C9—C8—C7119.9 (9)
C5—N1—Pt1113.5 (6)C9—C8—H8120.0
C10—N2—C6120.5 (8)C7—C8—H8120.0
C10—N2—Pt1125.3 (6)C10—C9—C8119.9 (9)
C6—N2—Pt1114.2 (6)C10—C9—H9120.0
N1—C1—C2121.7 (9)C8—C9—H9120.0
N1—C1—H1119.1N2—C10—C9120.8 (9)
C2—C1—H1119.1N2—C10—H10119.6
C3—C2—C1118.3 (10)C9—C10—H10119.6
C3—C2—H2120.9
N2—Pt1—N1—C1178.8 (8)C3—C4—C5—N10.4 (16)
Br2—Pt1—N1—C11.2 (8)C3—C4—C5—C6179.3 (10)
Br4—Pt1—N1—C189.6 (8)C1—N1—C5—C41.1 (14)
Br3—Pt1—N1—C191.5 (8)Pt1—N1—C5—C4179.3 (8)
N2—Pt1—N1—C50.8 (6)C1—N1—C5—C6179.9 (9)
Br2—Pt1—N1—C5179.3 (6)Pt1—N1—C5—C61.7 (11)
Br4—Pt1—N1—C588.4 (6)C10—N2—C6—C70.9 (14)
Br3—Pt1—N1—C590.5 (6)Pt1—N2—C6—C7178.4 (7)
N1—Pt1—N2—C10179.6 (9)C10—N2—C6—C5179.4 (9)
Br1—Pt1—N2—C101.1 (9)Pt1—N2—C6—C51.3 (11)
Br4—Pt1—N2—C1090.8 (8)C4—C5—C6—N2179.1 (9)
Br3—Pt1—N2—C1090.7 (8)N1—C5—C6—N22.0 (13)
N1—Pt1—N2—C60.3 (6)C4—C5—C6—C71.3 (16)
Br1—Pt1—N2—C6179.6 (6)N1—C5—C6—C7177.6 (9)
Br4—Pt1—N2—C689.9 (6)N2—C6—C7—C80.7 (14)
Br3—Pt1—N2—C688.6 (6)C5—C6—C7—C8179.7 (10)
C5—N1—C1—C21.8 (14)C6—C7—C8—C90.4 (15)
Pt1—N1—C1—C2179.7 (7)C7—C8—C9—C101.3 (16)
N1—C1—C2—C31.6 (16)C6—N2—C10—C90.1 (15)
C1—C2—C3—C40.9 (17)Pt1—N2—C10—C9179.2 (8)
C2—C3—C4—C50.3 (17)C8—C9—C10—N21.0 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br20.952.733.366 (9)125
C3—H3···Br1i0.952.893.734 (10)149
C10—H10···Br10.952.703.335 (9)125
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[PtBr4(C10H8N2)]
Mr670.91
Crystal system, space groupMonoclinic, Pn
Temperature (K)200
a, b, c (Å)8.3146 (7), 6.9010 (5), 12.5873 (10)
β (°) 102.940 (2)
V3)703.91 (10)
Z2
Radiation typeMo Kα
µ (mm1)21.30
Crystal size (mm)0.25 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.462, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4282, 2257, 2128
Rint0.033
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.053, 0.98
No. of reflections2257
No. of parameters154
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 1.66
Absolute structureFlack (1983), 714 Friedel pairs
Absolute structure parameter0.004 (14)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N22.046 (7)Pt1—Br22.4442 (10)
Pt1—N12.048 (7)Pt1—Br42.4595 (11)
Pt1—Br12.4412 (10)Pt1—Br32.4756 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br20.952.733.366 (9)125
C3—H3···Br1i0.952.893.734 (10)149
C10—H10···Br10.952.703.335 (9)125
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds