metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(2-pyridone-κO)silver(I)]-μ-2-pyridone-κ2O:O] hexa­fluorido­phosphate]

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 August 2010; accepted 1 September 2010; online 4 September 2010)

The asymmetric unit of the polymeric title salt, {[Ag(C5H5NO)2]PF6}n, comprises an AgI cation (located on a twofold axis), two 2-pyridone ligands (with distinct coordination modes), and half a PF6 anion (situated on a centre of inversion). The AgI atom is in an approximately octa­hedral AgO6 coordination geometry, which is stabilized by intra­molecular N—H⋯O hydrogen bonds. The result of the bridging mode of the 2-pyridone ligand is the formation of a supra­molecular chain along the c axis; these are consolidated in the crystal by C—H⋯F inter­actions.

Related literature

For structural diversity in the supra­molecular structures of silver salts, see: Kundu et al. (2010[Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269-1282.]). For a related Ag structure, see: Arman et al. (2010[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167-m1168.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H5NO)2]PF6

  • Mr = 633.24

  • Monoclinic, C 2/c

  • a = 13.519 (5) Å

  • b = 24.187 (9) Å

  • c = 7.301 (3) Å

  • β = 96.918 (5)°

  • V = 2369.9 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.48 × 0.40 × 0.14 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.535, Tmax = 1.000

  • 8382 measured reflections

  • 2703 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.14

  • 2703 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Ag—O1 2.3543 (19)
Ag—O2 2.5055 (18)
Ag—O2i 2.6278 (19)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.91 2.765 (2) 171
N2—H2⋯O1ii 0.86 1.90 2.754 (3) 174
C3—H3⋯F1iii 0.93 2.48 3.353 (3) 157
C5—H5⋯F3iv 0.93 2.51 3.398 (3) 159
Symmetry codes: (ii) -x, -y, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x-1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structural diversity in the supramolecular structures of silver salts is well documented (Kundu et al., 2010). The title compound, (I), was was isolated and characterized as a continuation of recent structural studies of such structures (Arman et al., 2010).

The crystallographic asymmetric unit of (I) comprises half a Ag cation, situated on a crystallographic 2-fold axis, a monodentate 2-pyridone ligand, coordinating via the carbonyl-O atom, a bidentate 2-pyridone ligand, bridging two Ag cations via a carbonyl-O atom, and half a PF6- anion, situated about a crystallographic centre of inversion, Fig. 1. The resulting AgI atom coordination geomerty is based on a distorted octahedron defined by an O6 donor set, with the Ag—O bond distances lying in the range 2.3543 (19) to 2.6278 (19) Å, Table 1. The coordination geometry is stabilized by intramolecular N—H···O hydrogen bonds, Table 2. As the carbonyl-O2 atom is bidentate bridging, a supramolecular chain along the c axis is generated, Fig. 2. The chains are consolidated in the 3-D structure by C—H···F interactions, Fig. 3.

Related literature top

For structural diversity in the supramolecular structures of silver salts, see: Kundu et al. (2010). For a related Ag structure, see: Arman et al. (2010).

Experimental top

The title salt, (I), was isolated as colourless blocks from the 1:2 reaction of silver hexafluorophosphate (Aldrich) and 2-hydroxypyridine (Aldrich) in methanol solution; m. pt 393–399 K.

Refinement top

The H-atoms were placed in calculated positions (N—H = 0.86 Å and C—H = 0.93 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(carrier atom).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit in the structure of (I) showing displacement ellipsoids at the 50% probability level. The Ag (lying on a 2-fold axis of symmetry) and P (lying on a centre of inversion) atom environments have been expanded to show the respective coordination geometries.
[Figure 2] Fig. 2. Portion of the supramolecular chain aligned along the c axis in (I).
[Figure 3] Fig. 3. A view in projection down the c axis of the crystal packing in (I), emphasizing the Ag octahedra and interspersing of the PF6- anions.
catena-Poly[[[(2-pyridone-κO)silver(I)]-µ-2-pyridone- κ2O:O] hexafluoridophosphate] top
Crystal data top
[Ag(C5H5NO)2]PF6F(000) = 1264
Mr = 633.24Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 4745 reflections
a = 13.519 (5) Åθ = 3.1–40.6°
b = 24.187 (9) ŵ = 1.00 mm1
c = 7.301 (3) ÅT = 293 K
β = 96.918 (5)°Block, colourless
V = 2369.9 (16) Å30.48 × 0.40 × 0.14 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2703 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1417
Tmin = 0.535, Tmax = 1.000k = 3031
8382 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.036P)2 + 3.3853P]
where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ag(C5H5NO)2]PF6V = 2369.9 (16) Å3
Mr = 633.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.519 (5) ŵ = 1.00 mm1
b = 24.187 (9) ÅT = 293 K
c = 7.301 (3) Å0.48 × 0.40 × 0.14 mm
β = 96.918 (5)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2573 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 1.000Rint = 0.033
8382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.14Δρmax = 0.78 e Å3
2703 reflectionsΔρmin = 0.47 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.00000.00000.00000.02327 (9)
P10.50000.14921 (3)0.25000.02229 (17)
O10.00398 (11)0.09711 (7)0.0200 (2)0.0243 (3)
N10.13089 (13)0.11598 (7)0.1275 (2)0.0206 (3)
H10.13780.08110.14570.025*
F10.52808 (12)0.14954 (6)0.4566 (2)0.0349 (3)
O20.13415 (13)0.00438 (6)0.2083 (2)0.0239 (3)
C60.19943 (16)0.03274 (9)0.2224 (3)0.0214 (4)
N20.18133 (13)0.08533 (7)0.1662 (2)0.0223 (4)
H20.12650.09160.12100.027*
C10.05410 (15)0.13279 (8)0.0342 (3)0.0195 (4)
F20.58219 (11)0.19640 (6)0.1951 (2)0.0340 (3)
F30.58231 (11)0.10246 (6)0.1955 (2)0.0356 (3)
C50.19677 (17)0.15108 (9)0.1932 (3)0.0240 (4)
H50.24780.13710.25440.029*
C100.24535 (18)0.12841 (9)0.1781 (3)0.0261 (4)
H100.22910.16320.13690.031*
C20.04687 (17)0.19098 (9)0.0059 (3)0.0237 (4)
H2A0.00280.20480.05910.028*
C30.11206 (18)0.22646 (9)0.0732 (3)0.0279 (5)
H30.10590.26430.05480.033*
C70.29123 (17)0.02432 (10)0.2950 (3)0.0263 (5)
H70.30800.01080.33330.032*
C90.33255 (17)0.12096 (10)0.2493 (3)0.0293 (5)
H90.37620.15030.25850.035*
C40.18849 (18)0.20657 (9)0.1700 (3)0.0283 (5)
H40.23240.23080.21710.034*
C80.35494 (17)0.06760 (11)0.3087 (3)0.0296 (5)
H80.41420.06160.35840.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.02195 (14)0.01698 (14)0.03202 (15)0.00192 (7)0.00785 (10)0.00250 (8)
P10.0220 (4)0.0201 (4)0.0267 (4)0.0000.0106 (3)0.000
O10.0232 (8)0.0203 (8)0.0304 (8)0.0016 (5)0.0076 (6)0.0000 (6)
N10.0225 (8)0.0173 (8)0.0225 (8)0.0008 (6)0.0045 (7)0.0029 (7)
F10.0418 (8)0.0363 (8)0.0298 (7)0.0041 (7)0.0174 (6)0.0042 (6)
O20.0225 (8)0.0191 (8)0.0308 (9)0.0005 (5)0.0063 (7)0.0036 (6)
C60.0217 (10)0.0204 (10)0.0220 (10)0.0003 (8)0.0023 (8)0.0040 (8)
N20.0218 (8)0.0215 (9)0.0244 (9)0.0021 (7)0.0062 (7)0.0015 (7)
C10.0198 (9)0.0201 (10)0.0186 (9)0.0001 (7)0.0019 (7)0.0017 (7)
F20.0328 (8)0.0300 (7)0.0408 (8)0.0092 (6)0.0106 (6)0.0067 (6)
F30.0307 (7)0.0292 (7)0.0480 (9)0.0084 (6)0.0086 (6)0.0009 (6)
C50.0239 (10)0.0258 (11)0.0228 (10)0.0027 (8)0.0055 (8)0.0020 (8)
C100.0327 (11)0.0213 (10)0.0245 (10)0.0065 (9)0.0043 (9)0.0013 (8)
C20.0277 (11)0.0197 (10)0.0239 (10)0.0026 (8)0.0039 (8)0.0021 (8)
C30.0364 (12)0.0165 (10)0.0311 (11)0.0019 (9)0.0056 (10)0.0018 (8)
C70.0234 (10)0.0283 (12)0.0278 (11)0.0032 (8)0.0048 (9)0.0021 (9)
C90.0272 (11)0.0320 (12)0.0286 (11)0.0115 (9)0.0025 (9)0.0052 (9)
C40.0316 (12)0.0234 (11)0.0312 (11)0.0070 (9)0.0092 (9)0.0008 (9)
C80.0208 (10)0.0406 (14)0.0278 (11)0.0022 (9)0.0042 (9)0.0049 (10)
Geometric parameters (Å, º) top
Ag—O1i2.3543 (19)C6—C71.422 (3)
Ag—O12.3543 (19)N2—C101.364 (3)
Ag—O2i2.5055 (18)N2—H20.8600
Ag—O22.5055 (18)C1—C21.427 (3)
Ag—O2ii2.6278 (19)C5—C41.359 (3)
Ag—O2iii2.6278 (19)C5—H50.9300
P1—F11.5993 (15)C10—C91.356 (3)
P1—F1iv1.5993 (15)C10—H100.9300
P1—F3iv1.6026 (15)C2—C31.363 (3)
P1—F31.6026 (15)C2—H2A0.9300
P1—F2iv1.6095 (15)C3—C41.405 (3)
P1—F21.6095 (15)C3—H30.9300
O1—C11.262 (3)C7—C81.367 (3)
N1—C51.359 (3)C7—H70.9300
N1—C11.370 (3)C9—C81.406 (4)
N1—H10.8600C9—H90.9300
O2—C61.272 (3)C4—H40.9300
C6—N21.368 (3)C8—H80.9300
O1—Ag—O1i180C6—O2—Ag125.40 (14)
O1—Ag—O291.09 (5)O2—C6—N2118.79 (19)
O1—Ag—O2i88.91 (5)O2—C6—C7125.1 (2)
O1—Ag—O2ii89.50 (5)N2—C6—C7116.14 (19)
O1—Ag—O2iii90.50 (5)C10—N2—C6123.64 (19)
O1i—Ag—O288.91 (5)C10—N2—H2118.2
O1i—Ag—O2i91.09 (5)C6—N2—H2118.2
O1i—Ag—O2ii90.50 (5)O1—C1—N1119.33 (19)
O1i—Ag—O2iii89.50 (5)O1—C1—C2124.96 (19)
O2—Ag—O2i180N1—C1—C2115.70 (18)
O2—Ag—O2ii89.18 (5)N1—C5—C4120.4 (2)
O2—Ag—O2iii90.82 (5)N1—C5—H5119.8
O2i—Ag—O2ii90.82 (5)C4—C5—H5119.8
O2i—Ag—O2iii89.18 (5)C9—C10—N2120.7 (2)
O2ii—Ag—O2iii180C9—C10—H10119.7
F1—P1—F1iv179.43 (13)N2—C10—H10119.7
F1—P1—F3iv90.33 (8)C3—C2—C1120.7 (2)
F1iv—P1—F3iv90.07 (8)C3—C2—H2A119.7
F1—P1—F390.07 (8)C1—C2—H2A119.7
F1iv—P1—F390.33 (8)C2—C3—C4120.8 (2)
F3iv—P1—F390.26 (12)C2—C3—H3119.6
F1—P1—F2iv89.82 (8)C4—C3—H3119.6
F1iv—P1—F2iv89.78 (8)C8—C7—C6120.3 (2)
F3iv—P1—F2iv90.03 (8)C8—C7—H7119.9
F3—P1—F2iv179.68 (9)C6—C7—H7119.9
F1—P1—F289.78 (8)C10—C9—C8118.0 (2)
F1iv—P1—F289.82 (8)C10—C9—H9121.0
F3iv—P1—F2179.69 (9)C8—C9—H9121.0
F3—P1—F290.03 (8)C5—C4—C3118.5 (2)
F2iv—P1—F289.67 (12)C5—C4—H4120.7
C1—O1—Ag130.04 (14)C3—C4—H4120.7
C5—N1—C1123.91 (18)C7—C8—C9121.3 (2)
C5—N1—H1118.0C7—C8—H8119.4
C1—N1—H1118.0C9—C8—H8119.4
O2i—Ag—O1—C1170.23 (18)C1—N1—C5—C40.7 (3)
O2—Ag—O1—C19.77 (18)C6—N2—C10—C90.4 (3)
O1i—Ag—O2—C628.01 (17)O1—C1—C2—C3178.6 (2)
O1—Ag—O2—C6151.99 (17)N1—C1—C2—C31.5 (3)
Ag—O2—C6—N220.6 (3)C1—C2—C3—C40.7 (4)
Ag—O2—C6—C7160.21 (16)O2—C6—C7—C8178.1 (2)
O2—C6—N2—C10178.9 (2)N2—C6—C7—C81.1 (3)
C7—C6—N2—C100.4 (3)N2—C10—C9—C80.5 (3)
Ag—O1—C1—N13.3 (3)N1—C5—C4—C31.5 (3)
Ag—O1—C1—C2176.67 (15)C2—C3—C4—C50.8 (4)
C5—N1—C1—O1179.28 (19)C6—C7—C8—C91.1 (4)
C5—N1—C1—C20.8 (3)C10—C9—C8—C70.2 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2; (iii) x, y, z1/2; (iv) x1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.912.765 (2)171
N2—H2···O1i0.861.902.754 (3)174
C3—H3···F1v0.932.483.353 (3)157
C5—H5···F3iv0.932.513.398 (3)159
Symmetry codes: (i) x, y, z; (iv) x1, y, z+1/2; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(C5H5NO)2]PF6
Mr633.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.519 (5), 24.187 (9), 7.301 (3)
β (°) 96.918 (5)
V3)2369.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.48 × 0.40 × 0.14
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.535, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8382, 2703, 2573
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.14
No. of reflections2703
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.47

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag—O12.3543 (19)Ag—O2i2.6278 (19)
Ag—O22.5055 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.912.765 (2)171
N2—H2···O1ii0.861.902.754 (3)174
C3—H3···F1iii0.932.483.353 (3)157
C5—H5···F3iv0.932.513.398 (3)159
Symmetry codes: (ii) x, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1, y, z+1/2.
 

References

First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167–m1168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds