supplementary materials


hb5629 scheme

Acta Cryst. (2010). E66, o2501-o2502    [ doi:10.1107/S1600536810035014 ]

N-[(4-Amino-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-3-yl)methyl]-4-methylbenzamide

H.-K. Fun, C. S. Yeap, Y. Mange, A. M. Isloor and C. Hegde

Abstract top

In the title compound, C11H13N5OS, the dihedral angle between the triazole ring and the benzene ring is 84.21 (7)°. The amino group adopts a pyramidal configuration. An intramolecular N-H...O hydrogen bond stabilizes the molecular structure and generates an S(8) ring. In the crystal, molecules are linked by intermolecular N-H...O, N-H...S, N-H...N and C-H...S hydrogen bonds into layers lying parallel to the bc plane. The crystal structure is further stabilized by aromatic [pi]-[pi] stacking interactions [centroid-centroid distance = 3.3330 (7) Å].

Comment top

The synthesis of 1,2,4-triazole derivatives has been attracting widespread attention due to their diverse biological activities such as antimicrobial, anti-inflammatory, and analgesic antitumorial activities (Demirbas et al., 2004; Tozkoparan et al., 2000; Turan-Zitouni et al., 1999; Demirbas et al., 2002; Kritsanida et al., 2002; Holla et al., 2002; Foroumadi et al., 2003; Isloor et al., 2009). There are some antimicrobial drugs containing a triazole moiety. For instance, fluconazole and itraconazole are used in medical therapy (Shujuan et al., 2004; Verreck et al., 2003). In addition, Vorozole, Letrozole, Fadrozole, and Anastrozole are nonsteroidal drugs used for the treatment of estrogen-dependent breast cancer (Clemons et al., 2004). Prompted by the diverse activities of 1,2,4-triazole derivatives, we have synthesized the title compound to study its crystal structure.

The geometric parameters of the title compound (Fig. 1) are comparable to its related structures (Fun et al., 2009a, b).The dihedral angle between the triazole ring [C9/N2/N3/C10/N4] and the benzene ring [C1–C6] is 84.21 (7)°. The amino group adopts a pyramidal configuration. An intramolecular N5—H1N5···O1 hydrogen bond stabilizes the molecular structure. In the crystal structure, the molecules are linked by intermolecular N1—H1N1···O1, N3—H1N3···S1, N3—H1N3···N5, N5—H2N5···S1 and C8—H8A···S1 hydrogen bonds (Table 1) into two-dimensional planes parallel to bc plane (Fig. 2). Cg1···Cg1 of 3.3330 (7) Å (-x, 2 - y, 1 - z) interactions further stabilize the crystal structure. Cg1 is centroid of the triazole ring.

Related literature top

For applications of 1,2,4-triazole derivatives, see: Demirbas et al. (2002, 2004); Tozkoparan et al. (2000); Turan-Zitouni et al. (1999); Kritsanida et al. (2002); Holla et al. (2002); Foroumadi et al. (2003); Isloor et al. (2009); Shujuan et al. (2004); Verreck et al. (2003); Clemons et al. (2004). For related structures, see: Fun et al. (2009a,b). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of {[(4-methylphenyl)carbonyl]amino}acetic acid (1.93 g, 0.01 mol) and thiocarbohydrazide (1.0 g, 0.01 mol) was taken in a round bottomed flask fitted with a reflux condenser. The mixture was then fused on oil bath for 1 h. The reaction mass was slowly cooled to room temperature and the solid mass was treated with NaHCO3 solution. The separated solid was collected by filtration and dried. Recrystallization was done from a mixture of ethanol-dioxane to yield colourless blocks of (I). Yield: 2.0 g, 76.0%, m.p. = 493–494 K.

Refinement top

N-bound hydrogen atoms were located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model. A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c axis, showing molecular planes parallel to bc plane. Intermolecular hydrogen bonds are shown as dashed lines.
N-[(4-Amino-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol- 3-yl)methyl]-4-methylbenzamide top
Crystal data top
C11H13N5OSF(000) = 552
Mr = 263.32Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6908 reflections
a = 14.8148 (1) Åθ = 2.8–32.6°
b = 8.6702 (1) ŵ = 0.26 mm1
c = 9.8534 (1) ÅT = 100 K
β = 104.923 (1)°Block, colourless
V = 1222.96 (2) Å30.30 × 0.27 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3555 independent reflections
Radiation source: fine-focus sealed tube3142 reflections with I > 2σ(I)
graphiteRint = 0.023
φ and ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.926, Tmax = 0.972k = 1211
15018 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.7537P]
where P = (Fo2 + 2Fc2)/3
3555 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H13N5OSV = 1222.96 (2) Å3
Mr = 263.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8148 (1) ŵ = 0.26 mm1
b = 8.6702 (1) ÅT = 100 K
c = 9.8534 (1) Å0.30 × 0.27 × 0.11 mm
β = 104.923 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3555 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3142 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.972Rint = 0.023
15018 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.44 e Å3
S = 1.07Δρmin = 0.28 e Å3
3555 reflectionsAbsolute structure: ?
180 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10394 (2)0.62450 (3)0.66661 (3)0.01567 (9)
O10.25236 (6)1.16404 (11)0.93553 (9)0.01636 (19)
N10.22250 (7)1.27102 (12)0.71802 (11)0.0132 (2)
N20.10834 (7)1.02977 (12)0.49330 (11)0.0126 (2)
N30.10360 (7)0.87126 (12)0.49292 (11)0.0123 (2)
N40.10800 (7)0.93784 (11)0.70210 (10)0.01071 (19)
N50.10633 (8)0.92596 (13)0.84341 (11)0.0144 (2)
C10.44707 (9)1.19963 (16)0.96321 (14)0.0194 (3)
H1A0.42931.11941.01340.023*
C20.54098 (10)1.23546 (18)0.98378 (16)0.0242 (3)
H2A0.58571.17811.04740.029*
C30.56933 (10)1.35571 (18)0.91096 (15)0.0244 (3)
C40.50110 (10)1.44261 (18)0.81922 (15)0.0244 (3)
H4A0.51881.52580.77240.029*
C50.40675 (9)1.40711 (16)0.79637 (14)0.0196 (3)
H5A0.36201.46550.73380.024*
C60.37934 (9)1.28382 (14)0.86742 (13)0.0147 (2)
C70.27951 (8)1.23533 (14)0.84421 (13)0.0130 (2)
C80.12391 (8)1.22850 (13)0.67896 (13)0.0126 (2)
H8A0.08961.29960.60840.015*
H8B0.09901.23620.76060.015*
C90.11102 (8)1.06742 (13)0.62240 (12)0.0110 (2)
C100.10403 (8)0.81094 (13)0.61801 (12)0.0115 (2)
C110.67179 (11)1.3904 (2)0.9308 (2)0.0371 (4)
H11A0.70381.38101.02840.056*
H11B0.67891.49360.89960.056*
H11C0.69781.31880.87690.056*
H1N10.2453 (12)1.299 (2)0.6521 (18)0.020 (4)*
H1N30.1054 (13)0.822 (2)0.419 (2)0.031 (5)*
H1N50.1532 (13)0.975 (2)0.8901 (19)0.025 (5)*
H2N50.0541 (12)0.970 (2)0.8501 (17)0.016 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02516 (17)0.00896 (14)0.01334 (15)0.00100 (11)0.00578 (12)0.00009 (10)
O10.0186 (4)0.0182 (4)0.0122 (4)0.0036 (3)0.0038 (3)0.0004 (3)
N10.0147 (5)0.0127 (5)0.0120 (5)0.0028 (4)0.0030 (4)0.0000 (4)
N20.0135 (5)0.0108 (4)0.0127 (5)0.0002 (4)0.0020 (4)0.0006 (4)
N30.0154 (5)0.0106 (4)0.0112 (5)0.0000 (4)0.0039 (4)0.0009 (4)
N40.0127 (4)0.0094 (4)0.0094 (4)0.0003 (3)0.0018 (3)0.0000 (3)
N50.0197 (5)0.0143 (5)0.0098 (5)0.0010 (4)0.0046 (4)0.0009 (4)
C10.0188 (6)0.0188 (6)0.0193 (6)0.0019 (5)0.0023 (5)0.0002 (5)
C20.0160 (6)0.0269 (7)0.0259 (7)0.0013 (5)0.0014 (5)0.0030 (6)
C30.0165 (6)0.0337 (8)0.0237 (7)0.0067 (5)0.0063 (5)0.0097 (6)
C40.0233 (7)0.0312 (7)0.0192 (7)0.0125 (6)0.0063 (5)0.0019 (5)
C50.0203 (6)0.0221 (6)0.0155 (6)0.0047 (5)0.0026 (5)0.0016 (5)
C60.0150 (5)0.0155 (5)0.0138 (5)0.0019 (4)0.0038 (4)0.0025 (4)
C70.0153 (5)0.0105 (5)0.0132 (5)0.0002 (4)0.0034 (4)0.0018 (4)
C80.0130 (5)0.0100 (5)0.0143 (5)0.0006 (4)0.0024 (4)0.0006 (4)
C90.0106 (5)0.0097 (5)0.0121 (5)0.0004 (4)0.0016 (4)0.0015 (4)
C100.0114 (5)0.0112 (5)0.0114 (5)0.0007 (4)0.0019 (4)0.0001 (4)
C110.0182 (7)0.0538 (11)0.0405 (10)0.0117 (7)0.0099 (7)0.0131 (8)
Geometric parameters (Å, °) top
S1—C101.6860 (12)C1—H1A0.9300
O1—C71.2409 (15)C2—C31.390 (2)
N1—C71.3469 (16)C2—H2A0.9300
N1—C81.4587 (15)C3—C41.391 (2)
N1—H1N10.843 (18)C3—C111.510 (2)
N2—C91.3040 (15)C4—C51.3919 (19)
N2—N31.3761 (14)C4—H4A0.9300
N3—C101.3375 (15)C5—C61.3942 (18)
N3—H1N30.85 (2)C5—H5A0.9300
N4—C101.3695 (15)C6—C71.4974 (17)
N4—C91.3780 (14)C8—C91.4975 (16)
N4—N51.4028 (14)C8—H8A0.9700
N5—H1N50.84 (2)C8—H8B0.9700
N5—H2N50.880 (17)C11—H11A0.9600
C1—C21.3885 (19)C11—H11B0.9600
C1—C61.3938 (18)C11—H11C0.9600
C7—N1—C8122.19 (10)C4—C5—H5A120.0
C7—N1—H1N1119.9 (12)C6—C5—H5A120.0
C8—N1—H1N1116.3 (12)C1—C6—C5119.31 (12)
C9—N2—N3103.97 (9)C1—C6—C7117.83 (11)
C10—N3—N2113.57 (10)C5—C6—C7122.85 (12)
C10—N3—H1N3126.8 (14)O1—C7—N1122.72 (11)
N2—N3—H1N3119.4 (14)O1—C7—C6121.40 (11)
C10—N4—C9108.24 (10)N1—C7—C6115.87 (10)
C10—N4—N5122.18 (10)N1—C8—C9110.91 (9)
C9—N4—N5129.57 (10)N1—C8—H8A109.5
N4—N5—H1N5106.3 (12)C9—C8—H8A109.5
N4—N5—H2N5106.4 (11)N1—C8—H8B109.5
H1N5—N5—H2N5110.9 (17)C9—C8—H8B109.5
C2—C1—C6120.09 (13)H8A—C8—H8B108.0
C2—C1—H1A120.0N2—C9—N4110.76 (10)
C6—C1—H1A120.0N2—C9—C8124.43 (10)
C1—C2—C3121.12 (14)N4—C9—C8124.61 (10)
C1—C2—H2A119.4N3—C10—N4103.45 (10)
C3—C2—H2A119.4N3—C10—S1129.53 (9)
C2—C3—C4118.42 (13)N4—C10—S1126.98 (9)
C2—C3—C11120.65 (15)C3—C11—H11A109.5
C4—C3—C11120.93 (15)C3—C11—H11B109.5
C3—C4—C5121.10 (13)H11A—C11—H11B109.5
C3—C4—H4A119.4C3—C11—H11C109.5
C5—C4—H4A119.4H11A—C11—H11C109.5
C4—C5—C6119.90 (13)H11B—C11—H11C109.5
C9—N2—N3—C100.49 (13)C5—C6—C7—N125.57 (17)
C6—C1—C2—C30.5 (2)C7—N1—C8—C984.82 (13)
C1—C2—C3—C41.7 (2)N3—N2—C9—N40.06 (12)
C1—C2—C3—C11178.05 (14)N3—N2—C9—C8175.06 (10)
C2—C3—C4—C52.4 (2)C10—N4—C9—N20.57 (13)
C11—C3—C4—C5177.38 (14)N5—N4—C9—N2177.73 (11)
C3—C4—C5—C60.8 (2)C10—N4—C9—C8174.55 (11)
C2—C1—C6—C52.1 (2)N5—N4—C9—C87.15 (19)
C2—C1—C6—C7177.06 (12)N1—C8—C9—N282.22 (14)
C4—C5—C6—C11.5 (2)N1—C8—C9—N492.24 (13)
C4—C5—C6—C7177.69 (12)N2—N3—C10—N40.81 (13)
C8—N1—C7—O10.08 (18)N2—N3—C10—S1177.08 (9)
C8—N1—C7—C6178.70 (10)C9—N4—C10—N30.81 (12)
C1—C6—C7—O125.05 (17)N5—N4—C10—N3177.64 (10)
C5—C6—C7—O1155.80 (13)C9—N4—C10—S1177.16 (9)
C1—C6—C7—N1153.59 (12)N5—N4—C10—S14.39 (17)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.841 (18)2.187 (17)2.9824 (14)157.7 (17)
N3—H1N3···S1ii0.851 (19)2.524 (19)3.2168 (11)139.2 (15)
N3—H1N3···N5ii0.851 (19)2.276 (18)2.9738 (15)139.3 (16)
N5—H1N5···O10.843 (19)2.169 (18)2.9587 (15)155.9 (16)
N5—H2N5···S1iii0.880 (18)2.666 (18)3.5381 (12)171.2 (14)
C8—H8A···S1iv0.972.873.4456 (12)119
Symmetry codes: (i) x, −y+5/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, y+1/2, −z+3/2; (iv) x, y+1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.841 (18)2.187 (17)2.9824 (14)157.7 (17)
N3—H1N3···S1ii0.851 (19)2.524 (19)3.2168 (11)139.2 (15)
N3—H1N3···N5ii0.851 (19)2.276 (18)2.9738 (15)139.3 (16)
N5—H1N5···O10.843 (19)2.169 (18)2.9587 (15)155.9 (16)
N5—H2N5···S1iii0.880 (18)2.666 (18)3.5381 (12)171.2 (14)
C8—H8A···S1iv0.972.873.4456 (12)119
Symmetry codes: (i) x, −y+5/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, y+1/2, −z+3/2; (iv) x, y+1, z.
Acknowledgements top

HKF thanks Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. CSY thanks USM for the award of a USM Fellowship. AMI is thankful to the Head of the Department of Chemistry and the Director of the National Institute of Technology-Karnataka, Surathkal, India, for providing the research facilities and encouragement.

references
References top

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Demirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804.

Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.

Foroumadi, A., Soltani, F., Moshafi, M. H. & Ashraf-Askari, R. (2003). Farmaco, 58, 1023–1028.

Fun, H.-K., Goh, J. H., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009a). Acta Cryst. E65, o1918–o1919.

Fun, H.-K., Yeap, C. S., Malladi, S., Padaki, M. & Isloor, A. M. (2009b). Acta Cryst. E65, o2213.

Holla, B. S., Poorjary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.

Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.

Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvouw, M. & De Clercq, E. (2002). Farmaco, 57, 253–257.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). Pharm. Biomed. Anal. 34, 1117–1124.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tozkoparan, B., Okhan, N. G., Aktay, G., Yesilada, E. & Ertan, M. (2000). Eur. J. Med. Chem. 34, 743–750.

Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218–223.

Verreck, G., Six, K., Vanden Mootor, G., Baert, L., Peeters, J. & Brewster, M. E. (2003). Int. J. Pharm. 251, 165–174.