organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­chloro­benzyl­­idene)-4-ethyl­thio­semicarbazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 31 August 2010; accepted 6 September 2010; online 11 September 2010)

The title compound, C10H11Cl2N3S, was prepared by the reaction of 4-ethyl­thio­semicarbazide and 2,4-dichloro­benzaldehyde. It is approximately planar, the dihedral angle between the benzene ring and the thio­urea unit being 8.43 (18)°. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops.

Related literature

For background to Schiff bases, see: Casas et al. (2000[Casas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11Cl2N3S

  • Mr = 276.18

  • Monoclinic, P 21 /n

  • a = 5.4339 (11) Å

  • b = 20.526 (4) Å

  • c = 11.313 (2) Å

  • β = 101.97 (3)°

  • V = 1234.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10913 measured reflections

  • 2707 independent reflections

  • 1416 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.187

  • S = 0.92

  • 2707 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.86 2.56 3.409 (5) 168
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base have attracted much attention because they can be utilized as effective ligands to be coordination compounds in coordination chemistry. (Casas et al., 2000). As part of our research for new Schiff-base compounds we synthesized the title compound (I), and describe its structure here. In the molecule structure, the dihedral angle between the benzene ring and the thiourea unit is [8.43 (18)°].

Bond lengths and angles agree with those observed in a related structure (Li & Jian, 2010).

Related literature top

For background to Schiff bases, see: Casas et al. (2000). For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of 4-ethylthiosemicarbazide (0.1 mol) and 2,4-dichlorobenzaldehyde (0.1 mol) was stirred in refluxing ethanol (30 mL) for 2 h to afford the title compound (0.090 mol, yield 90%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
1-(2,4-Dichlorobenzylidene)-4-ethylthiosemicarbazide top
Crystal data top
C10H11Cl2N3SF(000) = 568
Mr = 276.18Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1416 reflections
a = 5.4339 (11) Åθ = 3.5–27.5°
b = 20.526 (4) ŵ = 0.67 mm1
c = 11.313 (2) ÅT = 293 K
β = 101.97 (3)°Block, colorless
V = 1234.4 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.109
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
phi and ω scansh = 66
10913 measured reflectionsk = 2626
2707 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2707 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H11Cl2N3SV = 1234.4 (4) Å3
Mr = 276.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4339 (11) ŵ = 0.67 mm1
b = 20.526 (4) ÅT = 293 K
c = 11.313 (2) Å0.22 × 0.20 × 0.18 mm
β = 101.97 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1416 reflections with I > 2σ(I)
10913 measured reflectionsRint = 0.109
2707 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 0.92Δρmax = 0.37 e Å3
2707 reflectionsΔρmin = 0.35 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1063 (2)0.99987 (6)0.79802 (13)0.0434 (4)
Cl20.7303 (2)0.85591 (6)1.34950 (13)0.0499 (4)
Cl11.4115 (2)0.70212 (6)1.20880 (15)0.0558 (4)
N30.4756 (6)0.90330 (15)0.9707 (4)0.0355 (9)
N20.2667 (7)0.94274 (17)0.9454 (4)0.0390 (9)
H2A0.20300.95831.00290.047*
N10.2795 (7)0.93533 (18)0.7450 (4)0.0410 (10)
H1A0.41170.91180.76810.049*
C50.7795 (7)0.84768 (18)1.1156 (4)0.0317 (10)
C30.1623 (7)0.95672 (19)0.8288 (4)0.0324 (10)
C81.1713 (8)0.7596 (2)1.1742 (5)0.0381 (11)
C91.0643 (8)0.78286 (19)1.2644 (5)0.0393 (12)
H9A1.12090.76951.34400.047*
C40.5640 (8)0.89200 (19)1.0829 (5)0.0373 (11)
H4A0.49320.91141.14230.045*
C71.0936 (9)0.7793 (2)1.0562 (5)0.0418 (12)
H7A1.17150.76320.99640.050*
C100.8684 (8)0.82717 (19)1.2342 (4)0.0332 (10)
C60.8994 (8)0.8232 (2)1.0276 (5)0.0384 (11)
H6A0.84710.83680.94800.046*
C20.2011 (10)0.9487 (3)0.6169 (5)0.0492 (13)
H2B0.22010.99490.60290.059*
H2C0.02460.93770.59060.059*
C10.3510 (11)0.9109 (3)0.5440 (6)0.0641 (16)
H1B0.29350.92090.45990.096*
H1C0.33060.86510.55670.096*
H1D0.52550.92230.56860.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0362 (7)0.0577 (7)0.0350 (8)0.0114 (4)0.0044 (5)0.0005 (5)
Cl20.0628 (8)0.0614 (7)0.0280 (8)0.0123 (5)0.0151 (6)0.0009 (6)
Cl10.0561 (8)0.0551 (7)0.0546 (11)0.0202 (5)0.0078 (7)0.0014 (6)
N30.037 (2)0.0394 (19)0.030 (3)0.0028 (13)0.0062 (17)0.0035 (16)
N20.039 (2)0.051 (2)0.026 (3)0.0122 (15)0.0047 (17)0.0013 (17)
N10.037 (2)0.054 (2)0.030 (3)0.0091 (15)0.0019 (18)0.0029 (18)
C50.039 (2)0.030 (2)0.025 (3)0.0023 (15)0.0038 (19)0.0018 (17)
C30.031 (2)0.040 (2)0.026 (3)0.0020 (16)0.0043 (19)0.0015 (18)
C80.040 (2)0.038 (2)0.034 (3)0.0015 (17)0.003 (2)0.0022 (19)
C90.045 (3)0.041 (2)0.029 (3)0.0050 (17)0.001 (2)0.0030 (19)
C40.038 (2)0.042 (2)0.030 (3)0.0049 (17)0.004 (2)0.0011 (19)
C70.045 (3)0.047 (2)0.035 (3)0.0042 (18)0.012 (2)0.007 (2)
C100.041 (2)0.037 (2)0.022 (3)0.0003 (16)0.0089 (19)0.0005 (18)
C60.045 (3)0.047 (2)0.023 (3)0.0012 (18)0.005 (2)0.003 (2)
C20.055 (3)0.066 (3)0.025 (3)0.011 (2)0.004 (2)0.004 (2)
C10.057 (3)0.099 (4)0.038 (4)0.015 (3)0.013 (3)0.004 (3)
Geometric parameters (Å, º) top
S1—C31.681 (4)C8—C71.376 (7)
Cl2—C101.738 (5)C9—C101.388 (6)
Cl1—C81.743 (4)C9—H9A0.9300
N3—C41.282 (6)C4—H4A0.9300
N3—N21.375 (5)C7—C61.373 (6)
N2—C31.354 (6)C7—H7A0.9300
N2—H2A0.8600C6—H6A0.9300
N1—C31.322 (6)C2—C11.491 (7)
N1—C21.449 (7)C2—H2B0.9700
N1—H1A0.8600C2—H2C0.9700
C5—C61.392 (7)C1—H1B0.9600
C5—C101.393 (6)C1—H1C0.9600
C5—C41.468 (6)C1—H1D0.9600
C8—C91.362 (7)
C4—N3—N2115.8 (4)C6—C7—C8119.2 (5)
C3—N2—N3119.2 (4)C6—C7—H7A120.4
C3—N2—H2A120.4C8—C7—H7A120.4
N3—N2—H2A120.4C9—C10—C5122.1 (4)
C3—N1—C2124.7 (4)C9—C10—Cl2117.8 (4)
C3—N1—H1A117.7C5—C10—Cl2120.2 (3)
C2—N1—H1A117.7C7—C6—C5121.3 (5)
C6—C5—C10117.3 (4)C7—C6—H6A119.3
C6—C5—C4120.7 (4)C5—C6—H6A119.3
C10—C5—C4121.9 (4)N1—C2—C1111.9 (4)
N1—C3—N2117.5 (4)N1—C2—H2B109.2
N1—C3—S1123.6 (4)C1—C2—H2B109.2
N2—C3—S1118.9 (4)N1—C2—H2C109.2
C9—C8—C7122.1 (4)C1—C2—H2C109.2
C9—C8—Cl1119.0 (4)H2B—C2—H2C107.9
C7—C8—Cl1118.8 (4)C2—C1—H1B109.5
C8—C9—C10118.0 (5)C2—C1—H1C109.5
C8—C9—H9A121.0H1B—C1—H1C109.5
C10—C9—H9A121.0C2—C1—H1D109.5
N3—C4—C5118.5 (5)H1B—C1—H1D109.5
N3—C4—H4A120.8H1C—C1—H1D109.5
C5—C4—H4A120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.563.409 (5)168
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC10H11Cl2N3S
Mr276.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.4339 (11), 20.526 (4), 11.313 (2)
β (°) 101.97 (3)
V3)1234.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10913, 2707, 1416
Rint0.109
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.187, 0.92
No. of reflections2707
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.563.409 (5)168
Symmetry code: (i) x, y+2, z+2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds