organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isoprop­yl (3,4-di­methyl-5,5-dioxo-4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)acetate

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 20 September 2010; accepted 21 September 2010; online 25 September 2010)

In the title mol­ecule, C16H19N3O4S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.547 (2) and −0.254 (3) Å, respectively, from the plane formed by the remaining atoms. In the crystal, weak C—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For the biological applications of benzothia­zines, see: Shavel et al. (1968[Shavel, J. Jr, Mendham, N. J. & Zinnes, H. (1968). US Patent 3 408 347.]); Krapcho (1969[Krapcho, J. (1969). US Patent 3 459 748.]); Lombardino & Wiseman (1972[Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.]); Kwon & Park (1996[Kwon, S. K. & Park, M. S. (1996). Arzneim. Forsch. Drug Res. 46, 966-971.]); Wells et al. (2001[Wells, G. J., Tao, M., Josef, K. A. & Bihovsky, R. (2001). J. Med. Chem. 44, 3488-3503.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O4S

  • Mr = 349.40

  • Triclinic, [P \overline 1]

  • a = 7.6370 (2) Å

  • b = 8.5412 (2) Å

  • c = 13.3096 (4) Å

  • α = 98.4584 (18)°

  • β = 97.4870 (13)°

  • γ = 95.9599 (17)°

  • V = 844.69 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.18 × 0.16 × 0.11 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.962, Tmax = 0.977

  • 12392 measured reflections

  • 3824 independent reflections

  • 3552 reflections with I > 2.0σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.04

  • 3824 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.54 3.4015 (17) 150
C12—H12A⋯N2ii 0.99 2.50 3.4413 (17) 158
C12—H12B⋯O1iii 0.99 2.51 3.4694 (17) 163
C15—H15B⋯O3iv 0.98 2.53 3.456 (2) 157
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y, -z+2; (iv) -x, -y+1, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Important anti-inflammatory and analgesic properties of 4-hydroxy-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxides (Oxicams) (Lombardino & Wiseman, 1972; Kwon & Park, 1996) boosted research interests in benzothiazines. These studies led to discovery of a wide range of benzothiazine derivatives having potential biological activities, such as inhibitors of calpain I belonging to a family of calcium-dependent, non-lysosomal cysteine proteases (proteolytic enzymes) (Wells et al., 2001), antifungal (Shavel et al., 1968) and antibacterial agents (Zia-ur-Rehman et al., 2006), central nervous system depressants (drugs used to slow down brain activity and are used to treat anxiety, muscle tension, pain, insomnia, acute stress reactions, panic attacks and seizure disorders), tranquilizers (Krapcho, 1969) as well as antioxidants (Ahmad et al., 2010).

In the title molecule (Fig. 1), the heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced from the plane C1\C6\C7\C8 by 0.547 (2) and -0.254 (3) Å, respectively. The pertinent puckering parameters (Cremer & Pople, 1975) are: Q = 0.5288 (10) Å, θ = 63.93 (13)° and ϕ = 19.41 (16)°. Similar conformations of the corresponding rings have been reported in some closely related molecules (Siddiqui et al., 2008). The intermolecular interactions of the type C—H···N and C—H···O are listed in Tab. 1.

Related literature top

For the biological applications of benzothiazines, see: Shavel et al. (1968); Krapcho (1969); Lombardino & Wiseman (1972); Kwon & Park (1996); Wells et al. (2001); Zia-ur-Rehman et al. (2006); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 3,4-dimethyl-2,4-dihydropyrazolo[4,3-c][1,2]benzothiazine 5,5-dioxide (5.00 g, 0.020 mol), anhydrous potassium carbonate (3.31 g, 0.024 mol), isopropyl chloroacetate (3.28 g, 0.024 mol) and acetonitrile (30 ml) was refluxed for 10 h at 355 K, i. e. at the boiling point of acetonitrile. The completion of reaction was monitored by thin layer chromatography (TLC). After completion of the reaction the solvent was removed under vacuum. The residue was washed with cold water to obtain the title compound as a white crystalline product. Yellow prisms of (I) of approximate size 0.10–0.30 mm were grown from a solution of 0.5 g of the title compound dissolved in 15 ml mixture of methanol and chloroform (1:1); the methanol contained 0.5% of moisture. Yield of the recrystallised product : 80%

Refinement top

All the hydrogen atoms were discernible in the difference electron density map. However, they were positioned into the idealized positions and refined by the riding-model approximation. Used constraints: C—H = 0.98, 0.99, 1.00 and 0.95 Å for methyl, methylene, methine and aryl H-atoms, respectively. Uiso(H) = 1.5Ueq(methyl C-atoms) and 1.2Ueq(non-methyl C-atoms). The methyl groups were allowed to rotate about their axes during the refinement.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids at the 50% probability level.
Isopropyl 2-(3,4-dimethyl-5,5-dioxo-4H-pyrazolo[4,3-c][1,2]benzothiazin- 2-yl)acetate top
Crystal data top
C16H19N3O4SZ = 2
Mr = 349.40F(000) = 368
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Melting point = 453–455 K
a = 7.6370 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5412 (2) ÅCell parameters from 3658 reflections
c = 13.3096 (4) Åθ = 1.0–27.5°
α = 98.4584 (18)°µ = 0.22 mm1
β = 97.4870 (13)°T = 173 K
γ = 95.9599 (17)°Prism, yellow
V = 844.69 (4) Å30.18 × 0.16 × 0.11 mm
Data collection top
Nonius Kappa CCD
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube3552 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.017
ω and ϕ scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.962, Tmax = 0.977k = 1111
12392 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.4374P]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
72 constraints
Crystal data top
C16H19N3O4Sγ = 95.9599 (17)°
Mr = 349.40V = 844.69 (4) Å3
Triclinic, P1Z = 2
a = 7.6370 (2) ÅMo Kα radiation
b = 8.5412 (2) ŵ = 0.22 mm1
c = 13.3096 (4) ÅT = 173 K
α = 98.4584 (18)°0.18 × 0.16 × 0.11 mm
β = 97.4870 (13)°
Data collection top
Nonius Kappa CCD
diffractometer
3824 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3552 reflections with I > 2.0σ(I)
Tmin = 0.962, Tmax = 0.977Rint = 0.017
12392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
3824 reflectionsΔρmin = 0.38 e Å3
221 parameters
Special details top

Experimental. Analysis of the title compound by EI (electron impact) and MS (mass spectrometry): EI—MS (m/z, i. e. mass to charge ratio): 349.1

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35224 (5)0.09565 (4)0.67475 (2)0.02666 (11)
O10.53320 (15)0.09803 (13)0.71900 (8)0.0344 (3)
O20.26989 (18)0.21974 (12)0.59324 (8)0.0400 (3)
O30.07421 (14)0.34287 (14)1.06534 (8)0.0343 (2)
O40.25929 (13)0.47365 (12)1.20503 (7)0.0266 (2)
N10.23204 (16)0.09429 (13)0.76983 (8)0.0248 (2)
N20.38590 (15)0.30879 (13)0.90139 (8)0.0220 (2)
N30.35630 (15)0.22831 (13)0.97981 (8)0.0211 (2)
C10.33526 (18)0.09155 (15)0.63524 (10)0.0228 (3)
C20.3215 (2)0.10488 (17)0.53157 (10)0.0280 (3)
H20.31250.01270.48080.034*
C30.3213 (2)0.25514 (18)0.50375 (11)0.0290 (3)
H30.31410.26640.43340.035*
C40.33137 (19)0.38921 (17)0.57839 (10)0.0266 (3)
H40.33200.49170.55870.032*
C50.34052 (18)0.37494 (15)0.68136 (10)0.0234 (3)
H50.34500.46740.73150.028*
C60.34316 (17)0.22555 (15)0.71176 (9)0.0204 (2)
C70.34179 (17)0.19804 (15)0.81758 (9)0.0200 (2)
C80.28614 (17)0.04849 (14)0.84320 (9)0.0199 (2)
C90.29516 (17)0.07097 (15)0.94854 (9)0.0202 (2)
C100.25095 (18)0.04193 (16)1.01953 (10)0.0244 (3)
H10A0.24070.15180.98340.037*
H10B0.13770.02221.04310.037*
H10C0.34540.02601.07880.037*
C110.0369 (2)0.13282 (19)0.73806 (13)0.0377 (4)
H11A0.02160.13820.79900.057*
H11B0.01110.23600.69230.057*
H11C0.00770.04970.70190.057*
C120.38752 (18)0.31656 (15)1.08332 (9)0.0226 (3)
H12A0.48090.40791.08800.027*
H12B0.43130.24661.13160.027*
C130.21988 (18)0.37767 (15)1.11442 (9)0.0218 (3)
C140.11863 (18)0.56384 (16)1.24023 (10)0.0244 (3)
H140.00060.49631.22040.029*
C150.1178 (2)0.71022 (19)1.18913 (13)0.0372 (3)
H15A0.02550.77271.21190.056*
H15B0.09330.67781.11440.056*
H15C0.23430.77531.20790.056*
C160.1623 (2)0.6019 (2)1.35555 (11)0.0361 (3)
H16A0.07240.66291.38300.054*
H16B0.27980.66511.37470.054*
H16C0.16320.50241.38400.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0442 (2)0.01991 (17)0.01619 (16)0.01115 (14)0.00383 (13)0.00046 (12)
O10.0450 (6)0.0374 (6)0.0255 (5)0.0218 (5)0.0079 (4)0.0062 (4)
O20.0736 (8)0.0228 (5)0.0202 (5)0.0096 (5)0.0019 (5)0.0054 (4)
O30.0281 (5)0.0419 (6)0.0263 (5)0.0015 (4)0.0008 (4)0.0087 (4)
O40.0284 (5)0.0302 (5)0.0182 (4)0.0082 (4)0.0001 (4)0.0060 (4)
N10.0368 (6)0.0175 (5)0.0177 (5)0.0010 (4)0.0021 (4)0.0018 (4)
N20.0290 (6)0.0198 (5)0.0163 (5)0.0003 (4)0.0044 (4)0.0011 (4)
N30.0277 (5)0.0197 (5)0.0145 (5)0.0004 (4)0.0042 (4)0.0006 (4)
C10.0296 (7)0.0217 (6)0.0172 (6)0.0072 (5)0.0028 (5)0.0015 (5)
C20.0383 (8)0.0281 (7)0.0171 (6)0.0100 (6)0.0028 (5)0.0005 (5)
C30.0368 (8)0.0342 (7)0.0178 (6)0.0101 (6)0.0037 (5)0.0063 (5)
C40.0311 (7)0.0264 (7)0.0233 (6)0.0056 (5)0.0027 (5)0.0071 (5)
C50.0272 (6)0.0210 (6)0.0209 (6)0.0025 (5)0.0027 (5)0.0009 (5)
C60.0216 (6)0.0222 (6)0.0166 (6)0.0027 (5)0.0024 (4)0.0010 (5)
C70.0235 (6)0.0186 (6)0.0173 (6)0.0032 (5)0.0033 (5)0.0003 (4)
C80.0245 (6)0.0176 (6)0.0168 (6)0.0028 (5)0.0034 (5)0.0004 (4)
C90.0221 (6)0.0193 (6)0.0183 (6)0.0025 (4)0.0030 (5)0.0004 (4)
C100.0284 (7)0.0242 (6)0.0205 (6)0.0006 (5)0.0041 (5)0.0050 (5)
C110.0412 (9)0.0314 (8)0.0333 (8)0.0118 (6)0.0001 (7)0.0021 (6)
C120.0280 (6)0.0230 (6)0.0147 (6)0.0017 (5)0.0021 (5)0.0017 (5)
C130.0294 (7)0.0198 (6)0.0148 (6)0.0004 (5)0.0030 (5)0.0014 (4)
C140.0255 (6)0.0270 (6)0.0201 (6)0.0064 (5)0.0040 (5)0.0007 (5)
C150.0422 (9)0.0327 (8)0.0389 (8)0.0111 (6)0.0045 (7)0.0096 (6)
C160.0431 (9)0.0434 (9)0.0209 (7)0.0126 (7)0.0056 (6)0.0033 (6)
Geometric parameters (Å, º) top
S1—O21.4288 (11)C6—C71.4628 (17)
S1—O11.4333 (12)C7—C81.4077 (17)
S1—N11.6567 (12)C8—C91.3784 (17)
S1—C11.7670 (13)C9—C101.4901 (17)
O3—C131.1990 (17)C10—H10A0.9800
O4—C131.3343 (15)C10—H10B0.9800
O4—C141.4710 (16)C10—H10C0.9800
N1—C81.4323 (15)C11—H11A0.9800
N1—C111.484 (2)C11—H11B0.9800
N2—C71.3335 (16)C11—H11C0.9800
N2—N31.3613 (15)C12—C131.5153 (19)
N3—C91.3608 (16)C12—H12A0.9900
N3—C121.4473 (15)C12—H12B0.9900
C1—C21.3924 (18)C14—C161.5066 (19)
C1—C61.4062 (17)C14—C151.509 (2)
C2—C31.387 (2)C14—H141.0000
C2—H20.9500C15—H15A0.9800
C3—C41.390 (2)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.3870 (18)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.3955 (18)C16—H16C0.9800
C5—H50.9500
O2—S1—O1119.34 (7)C8—C9—C10131.29 (12)
O2—S1—N1108.09 (7)C9—C10—H10A109.5
O1—S1—N1106.69 (6)C9—C10—H10B109.5
O2—S1—C1109.45 (6)H10A—C10—H10B109.5
O1—S1—C1108.09 (7)C9—C10—H10C109.5
N1—S1—C1104.11 (6)H10A—C10—H10C109.5
C13—O4—C14117.22 (10)H10B—C10—H10C109.5
C8—N1—C11114.81 (11)N1—C11—H11A109.5
C8—N1—S1109.87 (9)N1—C11—H11B109.5
C11—N1—S1115.46 (10)H11A—C11—H11B109.5
C7—N2—N3103.99 (10)N1—C11—H11C109.5
C9—N3—N2113.73 (10)H11A—C11—H11C109.5
C9—N3—C12128.00 (11)H11B—C11—H11C109.5
N2—N3—C12118.25 (10)N3—C12—C13111.71 (11)
C2—C1—C6121.72 (12)N3—C12—H12A109.3
C2—C1—S1120.34 (10)C13—C12—H12A109.3
C6—C1—S1117.89 (10)N3—C12—H12B109.3
C3—C2—C1118.87 (13)C13—C12—H12B109.3
C3—C2—H2120.6H12A—C12—H12B107.9
C1—C2—H2120.6O3—C13—O4125.56 (13)
C2—C3—C4120.23 (13)O3—C13—C12124.87 (12)
C2—C3—H3119.9O4—C13—C12109.56 (11)
C4—C3—H3119.9O4—C14—C16106.21 (11)
C5—C4—C3120.70 (13)O4—C14—C15108.03 (12)
C5—C4—H4119.7C16—C14—C15113.37 (13)
C3—C4—H4119.7O4—C14—H14109.7
C4—C5—C6120.35 (12)C16—C14—H14109.7
C4—C5—H5119.8C15—C14—H14109.7
C6—C5—H5119.8C14—C15—H15A109.5
C5—C6—C1118.10 (12)C14—C15—H15B109.5
C5—C6—C7124.07 (11)H15A—C15—H15B109.5
C1—C6—C7117.70 (11)C14—C15—H15C109.5
N2—C7—C8111.10 (11)H15A—C15—H15C109.5
N2—C7—C6125.65 (11)H15B—C15—H15C109.5
C8—C7—C6123.21 (11)C14—C16—H16A109.5
C9—C8—C7106.45 (11)C14—C16—H16B109.5
C9—C8—N1129.33 (11)H16A—C16—H16B109.5
C7—C8—N1124.21 (11)C14—C16—H16C109.5
N3—C9—C8104.72 (11)H16A—C16—H16C109.5
N3—C9—C10123.98 (11)H16B—C16—H16C109.5
O2—S1—N1—C8167.41 (9)C1—C6—C7—N2164.83 (13)
O1—S1—N1—C863.09 (10)C5—C6—C7—C8158.23 (13)
C1—S1—N1—C851.10 (10)C1—C6—C7—C817.56 (19)
O2—S1—N1—C1135.64 (12)N2—C7—C8—C90.78 (15)
O1—S1—N1—C11165.14 (10)C6—C7—C8—C9177.14 (12)
C1—S1—N1—C1180.68 (11)N2—C7—C8—N1179.36 (12)
C7—N2—N3—C90.01 (14)C6—C7—C8—N12.7 (2)
C7—N2—N3—C12178.48 (11)C11—N1—C8—C983.07 (17)
O2—S1—C1—C226.58 (14)S1—N1—C8—C9144.81 (12)
O1—S1—C1—C2104.88 (12)C11—N1—C8—C796.76 (15)
N1—S1—C1—C2141.94 (12)S1—N1—C8—C735.36 (16)
O2—S1—C1—C6155.87 (11)N2—N3—C9—C80.48 (15)
O1—S1—C1—C672.67 (12)C12—N3—C9—C8178.77 (12)
N1—S1—C1—C640.51 (12)N2—N3—C9—C10179.31 (12)
C6—C1—C2—C32.0 (2)C12—N3—C9—C101.0 (2)
S1—C1—C2—C3175.44 (11)C7—C8—C9—N30.72 (14)
C1—C2—C3—C41.1 (2)N1—C8—C9—N3179.42 (13)
C2—C3—C4—C50.5 (2)C7—C8—C9—C10179.05 (13)
C3—C4—C5—C61.2 (2)N1—C8—C9—C100.8 (2)
C4—C5—C6—C10.4 (2)C9—N3—C12—C1385.83 (16)
C4—C5—C6—C7176.15 (12)N2—N3—C12—C1392.39 (14)
C2—C1—C6—C51.3 (2)C14—O4—C13—O310.09 (19)
S1—C1—C6—C5176.25 (10)C14—O4—C13—C12170.83 (11)
C2—C1—C6—C7174.78 (13)N3—C12—C13—O38.23 (18)
S1—C1—C6—C77.70 (17)N3—C12—C13—O4172.68 (10)
N3—N2—C7—C80.47 (14)C13—O4—C14—C16155.92 (12)
N3—N2—C7—C6177.38 (12)C13—O4—C14—C1582.14 (14)
C5—C6—C7—N219.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.543.4015 (17)150
C12—H12A···N2ii0.992.503.4413 (17)158
C12—H12B···O1iii0.992.513.4694 (17)163
C15—H15B···O3iv0.982.533.456 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H19N3O4S
Mr349.40
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.6370 (2), 8.5412 (2), 13.3096 (4)
α, β, γ (°)98.4584 (18), 97.4870 (13), 95.9599 (17)
V3)844.69 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.18 × 0.16 × 0.11
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.962, 0.977
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
12392, 3824, 3552
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.04
No. of reflections3824
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.543.4015 (17)150
C12—H12A···N2ii0.992.503.4413 (17)158
C12—H12B···O1iii0.992.513.4694 (17)163
C15—H15B···O3iv0.982.533.456 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y+1, z+2.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKrapcho, J. (1969). US Patent 3 459 748.  Google Scholar
First citationKwon, S. K. & Park, M. S. (1996). Arzneim. Forsch. Drug Res. 46, 966–971.  CAS Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848–849.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShavel, J. Jr, Mendham, N. J. & Zinnes, H. (1968). US Patent 3 408 347.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWells, G. J., Tao, M., Josef, K. A. & Bihovsky, R. (2001). J. Med. Chem. 44, 3488–3503.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds