organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,4,5-Tetra­fluoro-3,6-di­iodo­benzene–4-(pyridin-4-ylsulfan­yl)pyridine (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 September 2010; accepted 25 September 2010; online 30 September 2010)

The asymmetric unit of the title 1:1 adduct, C10H8N2S·C6F4I2, comprises a half-mol­ecule of 1,2,4,5-tetra­fluoro-3,6-diiodo­benzene, and half a 4-(pyridin-4-ylsulfan­yl)pyridine mol­ecule. The former is completed by crystallographic inversion symmetry, the latter by twofold symmetry, with the S atom lying on the rotation axis. The almost planar 1,2,4,5-tetra­fluoro-3,6-diiodo­benzene mol­ecule (r.m.s. deviation of all 12 atoms = 0.016 Å) and twisted 4-(pyridin-4-ylsulfan­yl)pyridine mol­ecule [dihedral angle between pyridyl rings = 54.88 (13)°] are connected by N⋯I inter­actions [2.838 (4) Å], generating a supra­molecular chain with a step-ladder topology. These chains are connected in the crystal by C—H⋯F and C—H⋯π(pyrid­yl) inter­actions.

Related literature

For related studies on co-crystal formation, see: Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2356.]). For background to halogen bonding, see: Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105-136.]); Pennington et al. (2008[Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65-104.]). For the desulfurization of 4-(pyridin-4-yldisulfan­yl)pyridine, see: Aragoni et al. (2007[Aragoni, M. C., Arca, M., Crespo, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Verani, G. (2007). CrystEngComm, 9, 873-878.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2S·C6F4I2

  • Mr = 590.10

  • Monoclinic, C 2/c

  • a = 13.804 (5) Å

  • b = 5.829 (2) Å

  • c = 22.164 (8) Å

  • β = 97.989 (7)°

  • V = 1766.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.72 mm−1

  • T = 98 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.757, Tmax = 1.000

  • 5209 measured reflections

  • 1823 independent reflections

  • 1733 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.073

  • S = 1.07

  • 1823 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C4–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F1i 0.95 2.52 3.213 (5) 130
C8—H8⋯Cg1ii 0.95 2.82 3.557 (5) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of studies into the phenomenon of co-crystallization (Broker et al., 2008; Arman et al., 2010), including investigations of halogen bonding (Pennington et al., 2008), the co-crystallization of 1,2,4,5-tetrafluoro-3,6-diiodobenzene and 4-(pyridin-4-yldisulfanyl)pyridine was investigated. This lead to the isolation of the title 1/1 co-crystal, (I), in which desulfurization of 4-(pyridin-4-yldisulfanyl)pyridine has occurred, a process that has literature precedents (Aragoni et al., 2007).

The asymmetric unit in (I) comprises half a molecule of 1,2,4,5-tetrafluoro-3,6-diiodobenzene as this is situated about a centre of inversion, Fig. 1, and half a molecule of 4-(pyridin-4-ylsulfanyl)pyridine, Fig. 2, with the S atom lying on a 2-fold axis. The C6F4I2 molecule is planar with the r.m.s. deviation of all 12 atoms being 0.016 Å. The pyridyl rings in 4-(pyridin-4-ylsulfanyl)pyridine are twisted and form a dihedral angle of 54.88 (13) °.

The components of the co-crystal are connected via N···I interactions [2.838 (4) Å] to form a supramolecular chain with a step-ladder topology and with a base vector 2 0 1, Fig. 3. The chains are consolidated in the crystal packing by C—H···F and C—H···π(pyridyl) interactions, Table 1 and Fig. 4. The N···I interactions observed in (I) represents a further example of N···I—C halogen bonding (Metrangolo et al., 2008).

Related literature top

For related studies on co-crystal formation, see: Broker et al. (2008); Arman et al. (2010). For background to halogen bonding, see: Metrangolo et al. (2008); Pennington et al. (2008). For the desulfurization of 4-(pyridin-4-yldisulfanyl)pyridine, see: Aragoni et al. (2007).

Experimental top

Initially 1,2,4,5-tetrafluoro-3,6-diiodobenzene (Aldrich, 0.04 mmol) and 4-(pyridin-4-yldisulfanyl)pyridine (Aldrich, 0.04 mmol) were dissolved in a THF/acetone (1/1) mixture and after evaporation of the solvent, the powder was then dissolved in ethanol. Again, crystals did not form so the powder was dissolved in a CHCl3/acetone (1/1) mixture. Slow evaporation of this solution deposited yellow blocks of (I) which, after crystallographic characterization, was proven to contain 4-(pyridin-4-ylsulfanyl)pyridine, indicating that desulfurization of 4-(pyridin-4-yldisulfanyl)pyridine had occurred (Aragoni et al., 2007). M. pt:. 423–427 K. IR assignment (cm-1): 757 (m, sh); 807 (s, sh); 939 (s, sh); 1065 (s, sh); 1208 (m, sh) (C—F); 1408 (m, sh), 1456 (s, sh) C—C (aromatic); 1570 (s, sh) CN; 2924 (s) C—H.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.34 and 0.63 e Å-3, respectively, were located 1.06 Å and 0.88 Å from the S1 and I1 atoms, respectively.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1,2,4,5-tetrafluoro-3,6-diiodobenzene found in the structure of (I) showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are related across a centre of inversion.
[Figure 2] Fig. 2. Molecular structure of 4-(pyridin-4-yldisulfanyl)pyridine found in the structure of (I) showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are related across a 2-fold axis.
[Figure 3] Fig. 3. The supramolecular chain in (I) sustained by N···I halogen bonds, shown as orange dashed lines.
[Figure 4] Fig. 4. A view in projection down the b axis showing the stacking of alternating layers of 1,2,4,5-tetrafluoro-3,6-diiodobenzene and 4-(pyridin-4-yldisulfanyl)pyridine molecules along the c axis. The N···I, C—H···F and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.
1,2,4,5-Tetrafluoro-3,6-diiodobenzene–4-(pyridin-4-ylsulfanyl)pyridine (1/1) top
Crystal data top
C10H8N2S·C6F4I2F(000) = 1104
Mr = 590.10Dx = 2.219 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3043 reflections
a = 13.804 (5) Åθ = 3.0–40.2°
b = 5.829 (2) ŵ = 3.72 mm1
c = 22.164 (8) ÅT = 98 K
β = 97.989 (7)°Block, yellow
V = 1766.1 (11) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1823 independent reflections
Radiation source: fine-focus sealed tube1733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1714
Tmin = 0.757, Tmax = 1.000k = 57
5209 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0202P)2 + 21.2619P]
where P = (Fo2 + 2Fc2)/3
1823 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C10H8N2S·C6F4I2V = 1766.1 (11) Å3
Mr = 590.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.804 (5) ŵ = 3.72 mm1
b = 5.829 (2) ÅT = 98 K
c = 22.164 (8) Å0.30 × 0.20 × 0.05 mm
β = 97.989 (7)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1823 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1733 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 1.000Rint = 0.027
5209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0202P)2 + 21.2619P]
where P = (Fo2 + 2Fc2)/3
1823 reflectionsΔρmax = 1.34 e Å3
114 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.33988 (2)0.75767 (5)0.089898 (12)0.02060 (11)
F10.4107 (2)0.9003 (5)0.03751 (12)0.0253 (6)
F20.5292 (2)0.6993 (5)0.10663 (12)0.0257 (6)
C10.4356 (3)0.6036 (8)0.0360 (2)0.0186 (9)
C20.4540 (3)0.6999 (7)0.0181 (2)0.0180 (9)
C30.5168 (3)0.5980 (8)0.0534 (2)0.0205 (9)
S10.00000.4266 (3)0.25000.0201 (3)
N10.2103 (3)0.0202 (7)0.15987 (18)0.0248 (9)
C40.1787 (3)0.1842 (9)0.1379 (2)0.0239 (10)
H40.20320.24040.10280.029*
C50.1121 (3)0.3192 (8)0.1635 (2)0.0215 (9)
H50.09050.46160.14550.026*
C60.0779 (3)0.2417 (8)0.2158 (2)0.0191 (9)
C70.1112 (3)0.0326 (8)0.2401 (2)0.0193 (9)
H70.09000.02420.27630.023*
C80.1762 (3)0.0926 (8)0.2104 (2)0.0203 (9)
H80.19770.23730.22680.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01922 (17)0.02358 (17)0.01968 (17)0.00034 (12)0.00505 (11)0.00148 (11)
F10.0271 (15)0.0212 (14)0.0285 (15)0.0061 (12)0.0072 (12)0.0045 (11)
F20.0288 (16)0.0283 (14)0.0218 (14)0.0026 (12)0.0099 (11)0.0084 (11)
C10.013 (2)0.023 (2)0.020 (2)0.0024 (17)0.0021 (16)0.0062 (17)
C20.015 (2)0.017 (2)0.021 (2)0.0005 (17)0.0009 (16)0.0016 (16)
C30.021 (2)0.023 (2)0.018 (2)0.0036 (19)0.0029 (17)0.0006 (17)
S10.0203 (8)0.0166 (7)0.0245 (8)0.0000.0068 (6)0.000
N10.020 (2)0.026 (2)0.028 (2)0.0012 (17)0.0057 (16)0.0018 (17)
C40.017 (2)0.031 (3)0.023 (2)0.0047 (19)0.0040 (18)0.0002 (19)
C50.022 (2)0.020 (2)0.022 (2)0.0007 (18)0.0005 (18)0.0007 (17)
C60.015 (2)0.020 (2)0.023 (2)0.0012 (17)0.0041 (17)0.0043 (17)
C70.014 (2)0.019 (2)0.024 (2)0.0025 (17)0.0003 (17)0.0017 (17)
C80.016 (2)0.018 (2)0.026 (2)0.0010 (17)0.0013 (17)0.0009 (17)
Geometric parameters (Å, º) top
I1—C12.101 (4)N1—C41.337 (6)
F1—C21.355 (5)C4—C51.389 (7)
F2—C31.352 (5)C4—H40.9500
C1—C21.379 (6)C5—C61.387 (6)
C1—C3i1.375 (6)C5—H50.9500
C2—C31.381 (6)C6—C71.385 (6)
C3—C1i1.375 (6)C7—C81.392 (6)
S1—C6ii1.766 (4)C7—H70.9500
S1—C61.766 (4)C8—H80.9500
N1—C81.342 (6)
C2—C1—C3i116.9 (4)C5—C4—H4118.0
C2—C1—I1121.8 (3)C6—C5—C4118.5 (4)
C3i—C1—I1121.3 (3)C6—C5—H5120.7
C1—C2—F1120.0 (4)C4—C5—H5120.7
C1—C2—C3121.6 (4)C7—C6—C5118.6 (4)
F1—C2—C3118.4 (4)C7—C6—S1124.0 (4)
F2—C3—C1i120.3 (4)C5—C6—S1117.3 (3)
F2—C3—C2118.2 (4)C6—C7—C8118.6 (4)
C1i—C3—C2121.5 (4)C6—C7—H7120.7
C6ii—S1—C6104.8 (3)C8—C7—H7120.7
C8—N1—C4116.7 (4)N1—C8—C7123.7 (4)
N1—C4—C5123.9 (4)N1—C8—H8118.2
N1—C4—H4118.0C7—C8—H8118.2
C3i—C1—C2—F1179.1 (4)N1—C4—C5—C61.7 (7)
I1—C1—C2—F10.6 (6)C4—C5—C6—C70.3 (7)
C3i—C1—C2—C30.4 (7)C4—C5—C6—S1175.7 (4)
I1—C1—C2—C3179.9 (3)C6ii—S1—C6—C734.9 (3)
C1—C2—C3—F2178.2 (4)C6ii—S1—C6—C5149.3 (4)
F1—C2—C3—F22.3 (6)C5—C6—C7—C81.1 (6)
C1—C2—C3—C1i0.4 (8)S1—C6—C7—C8176.8 (3)
F1—C2—C3—C1i179.0 (4)C4—N1—C8—C70.0 (7)
C8—N1—C4—C51.5 (7)C6—C7—C8—N11.3 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C4–C8 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···F1iii0.952.523.213 (5)130
C8—H8···Cg1iv0.952.823.557 (5)135
Symmetry codes: (iii) x+1/2, y+3/2, z; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2S·C6F4I2
Mr590.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)98
a, b, c (Å)13.804 (5), 5.829 (2), 22.164 (8)
β (°) 97.989 (7)
V3)1766.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.72
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.757, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5209, 1823, 1733
Rint0.027
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.073, 1.07
No. of reflections1823
No. of parameters114
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0202P)2 + 21.2619P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.34, 0.63

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C4–C8 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···F1i0.952.523.213 (5)130
C8—H8···Cg1ii0.952.823.557 (5)135
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2.
 

References

First citationAragoni, M. C., Arca, M., Crespo, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Verani, G. (2007). CrystEngComm, 9, 873–878.  Web of Science CSD CrossRef CAS Google Scholar
First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105–136.  Web of Science CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond. 126, 65–104.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds