metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1266-m1267

catena-Poly[[tri­phenyl­tin(IV)]-μ2-[3-(cyclo­hexyl­carbamo­yl)propanoato-κ2O1:O3]]

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 September 2010; accepted 13 September 2010; online 18 September 2010)

The Sn atom in the polymeric title compound, [Sn(C6H5)3(C10H16NO3)]n, is five-coordinated within a trans-C3O2 donor set that defines an approximate trigonal-bipyramidal geometry. The carboxyl­ate ligand is monodentate and the amide O atom bridges a symmetry-related Sn atom, generating a chain along [010] with a linear topology. An intra­molecular carboxyl­ate–carbonyl N—H⋯O hydrogen bond is responsible for the curved conformation within the carboxyl­ate ligand.

Related literature

For reviews of organotin carboxyl­ate structures, see: Ng et al. (1986[Ng, S. W., Chen, W. & Kumar Das, V. G. (1986). J. Organomet. Chem. 345, 59-64.]); Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.]). For the influence of steric effects upon structural motifs, see: Willem et al. (1998[Willem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. & Tiekink, E. R. T. (1998). Organometallics, 17, 5758-5766.]). For a closely related structure, see: Imtiaz-ud-Din et al. (2010[Imtiaz-ud-Din, Raqiqt-ul-Rasool,, Bhatti, M. H. & Ng, S. W. (2010). Acta Cryst. E66, m931.]). For additional geometric analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For the synthesis of N-cyclo­hexyl­succinamic acid, see: Dolzhenko et al. (2003[Dolzhenko, A. V., Syropyatov, B. Ya., Koz'minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J. 37, 407-408.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C10H16NO3)]

  • Mr = 548.23

  • Monoclinic, P 21 /c

  • a = 16.2488 (12) Å

  • b = 9.1243 (7) Å

  • c = 17.6597 (13) Å

  • β = 106.101 (1)°

  • V = 2515.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.634, Tmax = 0.746

  • 23281 measured reflections

  • 5756 independent reflections

  • 4864 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.084

  • S = 1.03

  • 5756 reflections

  • 302 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Sn—O1 2.1658 (17)
Sn—O3i 2.3178 (16)
Sn—C1 2.138 (2)
Sn—C7 2.129 (3)
Sn—C13 2.130 (3)
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 (1) 1.93 (2) 2.732 (3) 155 (3)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Triorganotin carboxylates are usually monomeric or polymeric (Ng et al., 1986; Tiekink, 1991), depending largely on steric factors (Willem et al., 1998). As a continuation of recent studies on triorganotin carboxylates having carboxylate ligands with additional coordination functionality (Imtiaz-ud-Din et al., 2010), the title compound, (I), was investigated.

In (I), Fig. 1, the Sn atom is coordinated by three ipso-C atoms derived from three phenyl groups, an O atom from a monodentate carboxylate ligand, and, from a symmetry related molecule, an amide-O atom, to define a trans-C3O2 coordination geometry, Table 1. The value of τ computes to 0.73 compared to τ = 1.0 for an ideal trigonal bipyramid and τ = 0.0 for an ideal square pyramid (Addison et al., 1984). The distortion in the Sn atom geometry is ascribed, in part, to the close approach of the O2 atom; Sn···O2 = 2.9936 (17) Å. The central part of the carboxylate ligand is curved, e.g. the C19–C20–C21–C22 torsion angle = -77.3 (3) °, owing to the presence of an intramolecular N–H···O2 hydrogen bond, Table 2. The resulting supramolecular chain has a linear topology, Fig. 2, in contrast to the helical chain found recently in the structure of the benzoate derivative (Imtiaz-ud-Din et al., 2010).

Related literature top

For reviews of organotin carboxylate structures, see: Ng et al. (1986); Tiekink (1991). For the influence of steric effects upon structural motifs, see: Willem et al. (1998). For a closely related structure, see: Imtiaz-ud-Din et al. (2010). For additional geometric analysis, see: Addison et al. (1984). For the synthesis of N-cyclohexylsuccinamic acid, see: Dolzhenko et al. (2003).

Experimental top

N-Cyclohexylsuccinamic acid was synthesized from the reaction of succinic anhydride and cyclohexylamine in ethyl acetate by the methodology reported earlier (Dolzhenko et al., 2003). Triphenyltin hydroxide (3.17 g, 10 mmol) and N-cyclohexylsuccinamic acid (2.66 g, 10 mmol) were heated to reflux in 50 ml dry ethanol/acetone mixture (8:2) for 6–8 h, The solvent was then removed under reduced pressure and the solid mass thus obtained was recrystallized from a mixture of chloroform and n-hexane (3:1) to furnish colourless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.86±0.01 Å; the Uiso value was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit in (I) extended to show the bridging atoms and showing the atom-labelling scheme with displacement ellipsoids at the 50% probability level. Symmetry operation i: x, 1 + y, z; ii: x, -1 + y, z.
[Figure 2] Fig. 2. A portion of the linear polymeric chain in (I). Colour code: Sn, orange; O, red; N, blue; C, grey; H, green.
catena-Poly[[triphenyltin(IV)]-µ2-[3-(cyclohexylcarbamoyl)propanoato- κ2O1:O3]] top
Crystal data top
[Sn(C6H5)3(C10H16NO3)]F(000) = 1120
Mr = 548.23Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5969 reflections
a = 16.2488 (12) Åθ = 2.4–28.2°
b = 9.1243 (7) ŵ = 1.04 mm1
c = 17.6597 (13) ÅT = 100 K
β = 106.101 (1)°Block, colourless
V = 2515.5 (3) Å30.25 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5756 independent reflections
Radiation source: fine-focus sealed tube4864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scanθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.634, Tmax = 0.746k = 1111
23281 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
5756 reflections(Δ/σ)max = 0.002
302 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.64 e Å3
Crystal data top
[Sn(C6H5)3(C10H16NO3)]V = 2515.5 (3) Å3
Mr = 548.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2488 (12) ŵ = 1.04 mm1
b = 9.1243 (7) ÅT = 100 K
c = 17.6597 (13) Å0.25 × 0.15 × 0.05 mm
β = 106.101 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4864 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.746Rint = 0.047
23281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.53 e Å3
5756 reflectionsΔρmin = 0.64 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.713719 (10)0.684277 (17)0.636309 (10)0.01166 (7)
O10.69004 (11)0.47709 (18)0.57420 (10)0.0155 (4)
O20.67770 (12)0.38360 (18)0.68702 (10)0.0167 (4)
O30.75097 (11)0.09345 (18)0.70015 (10)0.0162 (4)
N10.76074 (14)0.1326 (2)0.74976 (12)0.0155 (4)
H10.7445 (18)0.2220 (14)0.7429 (17)0.021 (8)*
C10.83515 (16)0.6177 (3)0.71146 (15)0.0135 (5)
C20.86804 (18)0.6706 (3)0.78784 (16)0.0182 (6)
H20.83460.73520.80940.022*
C30.94956 (19)0.6294 (3)0.83297 (18)0.0260 (6)
H30.97130.66590.88510.031*
C40.99895 (18)0.5356 (3)0.80199 (18)0.0272 (7)
H41.05490.50900.83230.033*
C50.96632 (18)0.4809 (3)0.72680 (18)0.0249 (6)
H50.99980.41600.70550.030*
C60.88493 (17)0.5203 (3)0.68220 (16)0.0196 (6)
H60.86270.48030.63090.023*
C70.71739 (17)0.7899 (3)0.52981 (15)0.0156 (5)
C80.79231 (19)0.8554 (3)0.52171 (17)0.0212 (6)
H80.84360.84950.56360.025*
C90.7924 (2)0.9291 (3)0.45295 (18)0.0283 (7)
H90.84410.97120.44790.034*
C100.7182 (2)0.9418 (3)0.39173 (17)0.0286 (7)
H100.71870.99300.34500.034*
C110.6436 (2)0.8797 (3)0.39911 (17)0.0275 (7)
H110.59220.88880.35750.033*
C120.64319 (19)0.8035 (3)0.46733 (17)0.0221 (6)
H120.59150.76010.47140.026*
C130.59173 (17)0.7011 (3)0.65848 (15)0.0149 (5)
C140.52338 (17)0.6196 (3)0.61153 (16)0.0177 (5)
H140.53310.55570.57240.021*
C150.44184 (17)0.6309 (3)0.62125 (17)0.0216 (6)
H150.39620.57470.58910.026*
C160.42711 (18)0.7244 (3)0.67808 (18)0.0240 (6)
H160.37130.73200.68480.029*
C170.49320 (19)0.8064 (3)0.72480 (18)0.0235 (6)
H170.48290.87080.76340.028*
C180.57512 (17)0.7944 (3)0.71517 (16)0.0174 (5)
H180.62050.85070.74770.021*
C190.68113 (16)0.3687 (3)0.61824 (15)0.0144 (5)
C200.67628 (18)0.2192 (3)0.57931 (16)0.0183 (6)
H20A0.73240.19790.57000.022*
H20B0.63320.22380.52730.022*
C210.65302 (16)0.0911 (3)0.62635 (15)0.0164 (5)
H21A0.60500.12220.64700.020*
H21B0.63240.00820.58980.020*
C220.72532 (16)0.0370 (3)0.69461 (15)0.0141 (5)
C230.82697 (16)0.0973 (3)0.82208 (14)0.0141 (5)
H230.86680.02380.80940.017*
C240.87745 (18)0.2358 (3)0.85281 (15)0.0211 (6)
H24A0.90530.27190.81320.025*
H24B0.83770.31270.86080.025*
C250.94531 (18)0.2078 (3)0.93013 (16)0.0205 (6)
H25A0.97330.30160.95080.025*
H25B0.98970.14160.92060.025*
C260.90676 (18)0.1391 (3)0.99144 (16)0.0205 (6)
H26A0.86790.21041.00620.025*
H26B0.95320.11511.03940.025*
C270.85695 (18)0.0001 (3)0.95937 (15)0.0209 (6)
H27A0.89680.07490.94950.025*
H27B0.83020.03980.99900.025*
C280.78805 (16)0.0314 (3)0.88344 (15)0.0181 (5)
H28A0.74560.10050.89420.022*
H28B0.75790.06060.86280.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01279 (11)0.00991 (10)0.01152 (10)0.00003 (6)0.00211 (7)0.00066 (6)
O10.0210 (10)0.0116 (8)0.0127 (9)0.0004 (7)0.0027 (8)0.0005 (7)
O20.0217 (10)0.0125 (8)0.0159 (10)0.0022 (7)0.0054 (8)0.0001 (7)
O30.0180 (10)0.0100 (8)0.0173 (9)0.0000 (7)0.0006 (8)0.0013 (7)
N10.0185 (12)0.0107 (10)0.0141 (11)0.0035 (8)0.0005 (9)0.0009 (8)
C10.0144 (13)0.0116 (11)0.0142 (12)0.0001 (9)0.0033 (10)0.0034 (9)
C20.0194 (14)0.0130 (12)0.0199 (14)0.0009 (10)0.0016 (12)0.0001 (10)
C30.0270 (16)0.0184 (13)0.0247 (16)0.0065 (12)0.0059 (13)0.0014 (12)
C40.0130 (14)0.0244 (14)0.0386 (18)0.0020 (11)0.0021 (13)0.0127 (13)
C50.0193 (15)0.0237 (14)0.0355 (17)0.0050 (11)0.0141 (13)0.0087 (12)
C60.0219 (14)0.0209 (13)0.0174 (14)0.0021 (11)0.0080 (12)0.0041 (10)
C70.0222 (14)0.0103 (11)0.0133 (13)0.0007 (10)0.0035 (11)0.0002 (9)
C80.0249 (15)0.0187 (13)0.0197 (14)0.0012 (11)0.0055 (12)0.0011 (11)
C90.0340 (17)0.0231 (15)0.0334 (18)0.0037 (12)0.0184 (15)0.0056 (12)
C100.0446 (19)0.0237 (15)0.0207 (15)0.0027 (13)0.0142 (14)0.0055 (12)
C110.0346 (18)0.0283 (15)0.0155 (14)0.0050 (13)0.0000 (13)0.0046 (12)
C120.0217 (15)0.0250 (15)0.0184 (14)0.0017 (11)0.0037 (12)0.0030 (11)
C130.0148 (13)0.0130 (12)0.0161 (13)0.0002 (9)0.0029 (11)0.0039 (9)
C140.0168 (14)0.0164 (12)0.0181 (13)0.0002 (10)0.0017 (11)0.0005 (10)
C150.0145 (14)0.0231 (14)0.0238 (15)0.0023 (11)0.0005 (12)0.0012 (11)
C160.0155 (14)0.0279 (15)0.0293 (16)0.0024 (11)0.0074 (13)0.0027 (12)
C170.0250 (16)0.0251 (15)0.0228 (15)0.0000 (11)0.0105 (13)0.0028 (11)
C180.0161 (14)0.0185 (13)0.0167 (13)0.0026 (10)0.0030 (11)0.0001 (10)
C190.0135 (13)0.0123 (11)0.0152 (13)0.0004 (10)0.0004 (10)0.0012 (10)
C200.0253 (15)0.0131 (12)0.0139 (13)0.0005 (10)0.0011 (11)0.0006 (10)
C210.0175 (13)0.0107 (11)0.0173 (13)0.0002 (9)0.0014 (11)0.0003 (9)
C220.0130 (12)0.0133 (11)0.0163 (13)0.0010 (9)0.0049 (10)0.0015 (10)
C230.0145 (13)0.0119 (11)0.0134 (12)0.0013 (9)0.0005 (10)0.0005 (9)
C240.0260 (15)0.0170 (13)0.0166 (14)0.0061 (11)0.0004 (12)0.0000 (11)
C250.0220 (15)0.0194 (13)0.0163 (14)0.0064 (11)0.0006 (12)0.0003 (10)
C260.0220 (15)0.0230 (13)0.0149 (13)0.0024 (11)0.0024 (11)0.0006 (11)
C270.0229 (15)0.0229 (13)0.0163 (14)0.0042 (11)0.0041 (12)0.0044 (11)
C280.0154 (14)0.0192 (13)0.0190 (14)0.0008 (10)0.0037 (11)0.0014 (10)
Geometric parameters (Å, º) top
Sn—O12.1658 (17)C13—C141.401 (4)
Sn—O3i2.3178 (16)C14—C151.386 (4)
Sn—C12.138 (2)C14—H140.9500
Sn—C72.129 (3)C15—C161.388 (4)
Sn—C132.130 (3)C15—H150.9500
O1—C191.291 (3)C16—C171.379 (4)
O2—C191.239 (3)C16—H160.9500
O3—C221.256 (3)C17—C181.392 (4)
O3—Snii2.3178 (16)C17—H170.9500
N1—C221.316 (3)C18—H180.9500
N1—C231.460 (3)C19—C201.520 (3)
N1—H10.855 (10)C20—C211.540 (3)
C1—C21.392 (4)C20—H20A0.9900
C1—C61.394 (3)C20—H20B0.9900
C2—C31.395 (4)C21—C221.514 (3)
C2—H20.9500C21—H21A0.9900
C3—C41.386 (4)C21—H21B0.9900
C3—H30.9500C23—C281.522 (3)
C4—C51.379 (4)C23—C241.522 (3)
C4—H40.9500C23—H231.0000
C5—C61.386 (4)C24—C251.520 (4)
C5—H50.9500C24—H24A0.9900
C6—H60.9500C24—H24B0.9900
C7—C121.396 (4)C25—C261.528 (4)
C7—C81.399 (4)C25—H25A0.9900
C8—C91.388 (4)C25—H25B0.9900
C8—H80.9500C26—C271.528 (4)
C9—C101.384 (4)C26—H26A0.9900
C9—H90.9500C26—H26B0.9900
C10—C111.377 (4)C27—C281.517 (4)
C10—H100.9500C27—H27A0.9900
C11—C121.392 (4)C27—H27B0.9900
C11—H110.9500C28—H28A0.9900
C12—H120.9500C28—H28B0.9900
C13—C181.396 (4)
C13—Sn—C7112.66 (10)C15—C16—H16119.9
C13—Sn—C1130.70 (10)C16—C17—C18119.8 (3)
C7—Sn—C1115.46 (10)C16—C17—H17120.1
C13—Sn—O196.45 (8)C18—C17—H17120.1
C7—Sn—O189.56 (8)C17—C18—C13121.1 (3)
C1—Sn—O194.03 (8)C17—C18—H18119.4
C13—Sn—O3i88.75 (8)C13—C18—H18119.4
C7—Sn—O3i88.06 (8)O2—C19—O1123.4 (2)
C1—Sn—O3i82.82 (8)O2—C19—C20122.1 (2)
O1—Sn—O3i174.78 (6)O1—C19—C20114.6 (2)
C19—O1—Sn113.42 (15)C19—C20—C21115.3 (2)
C22—O3—Snii139.03 (17)C19—C20—H20A108.5
C22—N1—C23124.5 (2)C21—C20—H20A108.5
C22—N1—H1118 (2)C19—C20—H20B108.5
C23—N1—H1117 (2)C21—C20—H20B108.5
C2—C1—C6118.3 (2)H20A—C20—H20B107.5
C2—C1—Sn122.91 (19)C22—C21—C20115.1 (2)
C6—C1—Sn118.78 (19)C22—C21—H21A108.5
C1—C2—C3120.6 (3)C20—C21—H21A108.5
C1—C2—H2119.7C22—C21—H21B108.5
C3—C2—H2119.7C20—C21—H21B108.5
C4—C3—C2120.2 (3)H21A—C21—H21B107.5
C4—C3—H3119.9O3—C22—N1120.2 (2)
C2—C3—H3119.9O3—C22—C21122.6 (2)
C5—C4—C3119.6 (3)N1—C22—C21117.2 (2)
C5—C4—H4120.2N1—C23—C28111.0 (2)
C3—C4—H4120.2N1—C23—C24108.8 (2)
C4—C5—C6120.3 (3)C28—C23—C24111.3 (2)
C4—C5—H5119.8N1—C23—H23108.6
C6—C5—H5119.8C28—C23—H23108.6
C5—C6—C1121.0 (3)C24—C23—H23108.6
C5—C6—H6119.5C25—C24—C23111.5 (2)
C1—C6—H6119.5C25—C24—H24A109.3
C12—C7—C8117.8 (2)C23—C24—H24A109.3
C12—C7—Sn120.59 (19)C25—C24—H24B109.3
C8—C7—Sn121.5 (2)C23—C24—H24B109.3
C9—C8—C7120.6 (3)H24A—C24—H24B108.0
C9—C8—H8119.7C24—C25—C26111.6 (2)
C7—C8—H8119.7C24—C25—H25A109.3
C10—C9—C8120.8 (3)C26—C25—H25A109.3
C10—C9—H9119.6C24—C25—H25B109.3
C8—C9—H9119.6C26—C25—H25B109.3
C11—C10—C9119.4 (3)H25A—C25—H25B108.0
C11—C10—H10120.3C25—C26—C27110.9 (2)
C9—C10—H10120.3C25—C26—H26A109.4
C10—C11—C12120.2 (3)C27—C26—H26A109.4
C10—C11—H11119.9C25—C26—H26B109.4
C12—C11—H11119.9C27—C26—H26B109.4
C11—C12—C7121.2 (3)H26A—C26—H26B108.0
C11—C12—H12119.4C28—C27—C26110.8 (2)
C7—C12—H12119.4C28—C27—H27A109.5
C18—C13—C14118.0 (2)C26—C27—H27A109.5
C18—C13—Sn123.41 (19)C28—C27—H27B109.5
C14—C13—Sn118.57 (19)C26—C27—H27B109.5
C15—C14—C13121.0 (3)H27A—C27—H27B108.1
C15—C14—H14119.5C27—C28—C23110.7 (2)
C13—C14—H14119.5C27—C28—H28A109.5
C14—C15—C16119.8 (3)C23—C28—H28A109.5
C14—C15—H15120.1C27—C28—H28B109.5
C16—C15—H15120.1C23—C28—H28B109.5
C17—C16—C15120.3 (3)H28A—C28—H28B108.1
C17—C16—H16119.9
C13—Sn—O1—C1966.35 (18)C1—Sn—C13—C1861.5 (2)
C7—Sn—O1—C19179.11 (18)O1—Sn—C13—C18162.4 (2)
C1—Sn—O1—C1965.40 (18)O3i—Sn—C13—C1818.0 (2)
O3i—Sn—O1—C19118.1 (7)C7—Sn—C13—C1471.7 (2)
C13—Sn—C1—C247.4 (2)C1—Sn—C13—C14121.5 (2)
C7—Sn—C1—C2119.1 (2)O1—Sn—C13—C1420.6 (2)
O1—Sn—C1—C2149.5 (2)O3i—Sn—C13—C14159.04 (19)
O3i—Sn—C1—C234.7 (2)C18—C13—C14—C150.2 (4)
C13—Sn—C1—C6134.47 (19)Sn—C13—C14—C15177.4 (2)
C7—Sn—C1—C659.0 (2)C13—C14—C15—C160.2 (4)
O1—Sn—C1—C632.4 (2)C14—C15—C16—C170.1 (4)
O3i—Sn—C1—C6143.4 (2)C15—C16—C17—C180.4 (4)
C6—C1—C2—C31.5 (4)C16—C17—C18—C130.4 (4)
Sn—C1—C2—C3176.64 (19)C14—C13—C18—C170.1 (4)
C1—C2—C3—C40.2 (4)Sn—C13—C18—C17176.9 (2)
C2—C3—C4—C51.2 (4)Sn—O1—C19—O26.9 (3)
C3—C4—C5—C60.5 (4)Sn—O1—C19—C20172.26 (16)
C4—C5—C6—C11.3 (4)O2—C19—C20—C219.0 (4)
C2—C1—C6—C52.3 (4)O1—C19—C20—C21171.8 (2)
Sn—C1—C6—C5175.95 (19)C19—C20—C21—C2277.3 (3)
C13—Sn—C7—C1228.0 (2)Snii—O3—C22—N1172.88 (17)
C1—Sn—C7—C12163.02 (19)Snii—O3—C22—C216.3 (4)
O1—Sn—C7—C1268.8 (2)C23—N1—C22—O33.6 (4)
O3i—Sn—C7—C12115.9 (2)C23—N1—C22—C21175.7 (2)
C13—Sn—C7—C8148.0 (2)C20—C21—C22—O3122.2 (3)
C1—Sn—C7—C820.9 (2)C20—C21—C22—N158.5 (3)
O1—Sn—C7—C8115.2 (2)C22—N1—C23—C2881.0 (3)
O3i—Sn—C7—C860.2 (2)C22—N1—C23—C24156.2 (2)
C12—C7—C8—C91.1 (4)N1—C23—C24—C25177.6 (2)
Sn—C7—C8—C9177.3 (2)C28—C23—C24—C2555.0 (3)
C7—C8—C9—C101.4 (4)C23—C24—C25—C2654.0 (3)
C8—C9—C10—C110.5 (4)C24—C25—C26—C2754.6 (3)
C9—C10—C11—C120.6 (4)C25—C26—C27—C2856.3 (3)
C10—C11—C12—C70.8 (4)C26—C27—C28—C2357.3 (3)
C8—C7—C12—C110.1 (4)N1—C23—C28—C27178.0 (2)
Sn—C7—C12—C11176.3 (2)C24—C23—C28—C2756.7 (3)
C7—Sn—C13—C18105.3 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)1.93 (2)2.732 (3)155 (3)

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C10H16NO3)]
Mr548.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.2488 (12), 9.1243 (7), 17.6597 (13)
β (°) 106.101 (1)
V3)2515.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.634, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
23281, 5756, 4864
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.084, 1.03
No. of reflections5756
No. of parameters302
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.64

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—O12.1658 (17)Sn—C72.129 (3)
Sn—O3i2.3178 (16)Sn—C132.130 (3)
Sn—C12.138 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.855 (10)1.932 (15)2.732 (3)155 (3)
 

Acknowledgements

We thank Allama Iqbal Open University and the University of Malaya for supporting this study.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolzhenko, A. V., Syropyatov, B. Ya., Koz'minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J. 37, 407–408.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationImtiaz-ud-Din, Raqiqt-ul-Rasool,, Bhatti, M. H. & Ng, S. W. (2010). Acta Cryst. E66, m931.  Google Scholar
First citationNg, S. W., Chen, W. & Kumar Das, V. G. (1986). J. Organomet. Chem. 345, 59–64.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. & Tiekink, E. R. T. (1998). Organometallics, 17, 5758–5766.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1266-m1267
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds