metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(benzene-1,2-di­carboxyl­ato-κO)bis­­[2-(1H-pyrazol-3-yl-κN2)pyridine-κN]cadmium(II)

aTianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: guojianhua1998@163.com

(Received 20 August 2010; accepted 27 August 2010; online 4 September 2010)

In the mononuclear title complex, [Cd(C8H4O4)(C8H7N3)2(H2O)], the CdII atom is six-coordinated in a distorted octa­hedral geometry by four N atoms from two bidentate chelating 2-(1H-pyrazol-3-yl)pyridine ligands, one O atom from a benzene-1,2-dicarboxyl­ate ligand and one water mol­ecule. The mol­ecular structure features intra­molecular O—H⋯O and N—H⋯O hydrogen bonds. In the crystal structure, the complex mol­ecules are assembled into a two-dimensional supra­molecular layer parallel to (011) via O—H⋯O and N—H⋯O hydrogen bonds and ππ stacking inter­actions between the pyridyl and pyrazole rings [centroid–centroid distances = 3.544 (2) and 3.722 (3) Å].

Related literature

For general background to the roles played by aromatic ring stacking and hydrogen bonding in biological reactions and in mol­ecular recognition and self-organization, see: Borrows et al. (1995[Borrows, A. D., Chan, C. M., Chowdhry, M. M., Mcgrady, J. E. & Mingos, D. M. P. (1995). Chem. Soc. Rev. 24, 329-340.]); Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-110.]). For related structures, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Hu et al. (2008[Hu, T.-L., Zou, R.-Q., Li, J.-R. & Bu, X.-H. (2008). Dalton Trans. pp. 1302-1311.]); Wan et al. (2003[Wan, Y.-H., Zhang, L.-P., Jin, L.-P., Gao, S. & Lu, S.-Z. (2003). Inorg. Chem. 42, 4985-4994.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C8H7N3)2(H2O)]

  • Mr = 584.86

  • Triclinic, [P \overline 1]

  • a = 10.1546 (7) Å

  • b = 10.7709 (7) Å

  • c = 12.4900 (9) Å

  • α = 64.986 (1)°

  • β = 71.209 (1)°

  • γ = 81.618 (1)°

  • V = 1171.90 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.771, Tmax = 0.828

  • 5869 measured reflections

  • 4075 independent reflections

  • 3194 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.064

  • S = 1.06

  • 4075 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.85 1.84 2.672 (4) 168
O5—H5B⋯O3 0.85 2.07 2.892 (4) 164
N3—H3A⋯O4i 0.86 1.79 2.646 (4) 176
N6—H6⋯O2 0.86 1.91 2.700 (4) 152
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The strategies for the construction of functional systems depend on the nature of the interactions responsible for creating networks. Aromatic ring stacking and hydrogen bonds are two important types of intermolecular non-covalent interactions, which play vital roles in highly efficient and specific biological reactions and are essential for molecular recognition and self-organization (Borrows et al., 1995; Hunter, 1994). Benzene-1,2-dicarboxylic acid (1,2-H2bdc) exhibits rich coordination modes to metal centers owing to its rigidity and polycarboxylate groups. Therefore, its metal complexes often show two- or three-dimensional structures (Cheng et al., 2006; Wan et al., 2003). 3-(2-Pyridyl)pyrazole (L) can act as a simple bidentate chelating ligand, similar to 2,2'-bipyridine (or 1,10-phenanthroline) (Hu et al., 2008). In the present paper, we report the crystal structure of the title compound, a new CdII complex based on the mixed ligands L and 1,2-bdc, in which interesting hydrogen-bonding and ππ stacking interactions are observed.

In the title mononuclear compound, as shown in Fig. 1, the CdII atom is coordinated by four N atoms from two L ligands, with Cd—N bond lengths in the range of 2.241 (3)–2.525 (3) Å, one O atom from the carboxylate group of a 1,2-bdc ligand, with a Cd—O bond distance of 2.306 (3)Å and one O atom from a water molecule, with a Cd—O bond distance of 2.306 (2) Å. Thus, the coordination polyhedron around the CdII atom can be best described as distorted octahedral. The complex molecule involves intramolecular O—H···O and N—H···O hydrogen bonds (Table 1). Analysis of the crystal packing indicates that intermolecular O—H···O and N—H···O hydrogen bonds link two complex molecules, producing a dimeric unit. The dimeric units are arranged in a parallel fashion, which makes the aromatic stacking available to afford a two-dimensional supramolecular layer (Fig. 2). The centroid–centroid distances between the pyridyl and pyrazolyl rings are 3.544 (2)Å and 3.722 (3) Å and their corresponding dihedral angles are 3.40 (2) and 4.68 (1)°, respectively.

Related literature top

For general background to the roles played by aromatic ring stacking and hydrogen bonding in biological reactions and in molecular recognition and self-organization, see: Borrows et al. (1995); Hunter (1994). For related structures, see: Cheng et al. (2006); Hu et al. (2008); Wan et al. (2003).

Experimental top

The title complex was obtained by the reaction of Cd(CH3CO2)2.2H2O, 3-(2-pyridyl)pyrazole and benzene-1,2-dicarboxylic acid in a molar ratio of 1:1:1, mixed with water (10 ml) under hydrothermal conditions at 413 K for 3 d. After cooled to room temperature at a rate of 5 K h-1, colorless block crystals suitable for X-ray analysis were obtained in a 60% yield. Analysis, calculated for C24H20CdN6O5: C 49.29, H 3.45, N 14.37%; found: C 49.33, H 3.35, N 14.44%.

Refinement top

Although all H atoms were visible in difference Fourier maps, they were placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93, N—H = 0.86 and O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The two-dimensional supramolecular layer in the title complex, formed via O—H···O, N—H···O hydrogen bonds and ππ stacking interactions (dashed lines).
Aqua(benzene-1,2-dicarboxylato-κO)bis[2-(1H-pyrazol-3-yl- κN2)pyridine-κN]cadmium(II) top
Crystal data top
[Cd(C8H4O4)(C8H7N3)2(H2O)]Z = 2
Mr = 584.86F(000) = 588
Triclinic, P1Dx = 1.657 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1546 (7) ÅCell parameters from 2320 reflections
b = 10.7709 (7) Åθ = 2.4–26.3°
c = 12.4900 (9) ŵ = 0.98 mm1
α = 64.986 (1)°T = 296 K
β = 71.209 (1)°Block, colorless
γ = 81.618 (1)°0.28 × 0.22 × 0.20 mm
V = 1171.90 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4075 independent reflections
Radiation source: fine-focus sealed tube3194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.771, Tmax = 0.828k = 1112
5869 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0213P)2 + 0.3676P]
where P = (Fo2 + 2Fc2)/3
4075 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cd(C8H4O4)(C8H7N3)2(H2O)]γ = 81.618 (1)°
Mr = 584.86V = 1171.90 (14) Å3
Triclinic, P1Z = 2
a = 10.1546 (7) ÅMo Kα radiation
b = 10.7709 (7) ŵ = 0.98 mm1
c = 12.4900 (9) ÅT = 296 K
α = 64.986 (1)°0.28 × 0.22 × 0.20 mm
β = 71.209 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4075 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3194 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.828Rint = 0.020
5869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.06Δρmax = 0.63 e Å3
4075 reflectionsΔρmin = 0.60 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.24772 (3)0.29292 (3)0.32881 (3)0.03231 (10)
O10.1867 (3)0.2927 (3)0.5234 (2)0.0476 (7)
O20.3783 (3)0.3400 (3)0.5504 (2)0.0436 (7)
O30.3964 (3)0.0332 (3)0.6592 (3)0.0526 (7)
O40.4584 (3)0.0169 (3)0.8281 (2)0.0553 (8)
O50.4235 (3)0.1523 (3)0.3978 (2)0.0518 (7)
H5A0.47930.09920.36940.078*
H5B0.40310.12990.47510.078*
N10.0044 (3)0.2749 (3)0.3848 (3)0.0356 (7)
N20.1955 (3)0.1179 (3)0.2898 (3)0.0335 (7)
N30.2667 (3)0.0223 (3)0.2516 (3)0.0414 (8)
H3A0.35580.02030.22260.050*
N40.2559 (3)0.4476 (3)0.1084 (3)0.0391 (8)
N50.3742 (3)0.4808 (3)0.2559 (3)0.0337 (7)
N60.4404 (3)0.5217 (3)0.3126 (3)0.0428 (8)
H60.44670.47440.38610.051*
C10.0887 (4)0.3532 (4)0.4319 (4)0.0483 (11)
H10.05610.42420.44010.058*
C20.2294 (5)0.3350 (5)0.4689 (4)0.0587 (12)
H20.29090.39350.49930.070*
C30.2772 (4)0.2280 (5)0.4598 (4)0.0601 (13)
H30.37220.21250.48510.072*
C40.1854 (4)0.1449 (4)0.4138 (3)0.0453 (11)
H40.21690.07190.40770.054*
C50.0440 (4)0.1701 (4)0.3760 (3)0.0330 (9)
C60.0611 (4)0.0854 (4)0.3267 (3)0.0324 (9)
C70.0489 (4)0.0336 (4)0.3124 (3)0.0452 (11)
H70.03240.07860.33160.054*
C80.1816 (5)0.0697 (4)0.2642 (4)0.0462 (11)
H80.20820.14500.24370.055*
C90.1999 (5)0.4256 (5)0.0353 (4)0.0578 (12)
H90.14820.34660.06810.069*
C100.2141 (5)0.5130 (5)0.0862 (4)0.0635 (13)
H100.17280.49390.13400.076*
C110.2908 (4)0.6286 (5)0.1340 (4)0.0579 (12)
H110.30270.68950.21580.069*
C120.3501 (4)0.6549 (4)0.0614 (3)0.0431 (10)
H120.40240.73330.09310.052*
C130.3305 (3)0.5622 (3)0.0601 (3)0.0312 (9)
C140.3906 (4)0.5814 (3)0.1437 (3)0.0313 (8)
C150.4666 (4)0.6870 (4)0.1304 (4)0.0485 (11)
H150.49230.76880.06150.058*
C160.4951 (4)0.6451 (4)0.2400 (4)0.0529 (12)
H160.54420.69410.26040.064*
C170.2603 (4)0.2903 (3)0.5888 (3)0.0330 (9)
C180.1943 (3)0.2270 (3)0.7271 (3)0.0284 (8)
C190.0726 (4)0.2855 (4)0.7768 (3)0.0423 (10)
H190.02850.35480.72430.051*
C200.0159 (4)0.2427 (4)0.9027 (4)0.0514 (11)
H200.06550.28330.93470.062*
C210.0796 (4)0.1403 (4)0.9804 (4)0.0523 (11)
H210.04230.11211.06550.063*
C220.1987 (4)0.0793 (4)0.9329 (3)0.0434 (10)
H220.24140.00990.98660.052*
C230.2569 (3)0.1189 (3)0.8060 (3)0.0288 (8)
C240.3806 (4)0.0414 (4)0.7593 (4)0.0365 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03555 (16)0.02947 (15)0.03196 (15)0.00863 (11)0.01207 (12)0.00811 (11)
O10.0392 (16)0.0718 (19)0.0339 (15)0.0109 (14)0.0121 (13)0.0188 (14)
O20.0391 (15)0.0525 (17)0.0334 (14)0.0165 (13)0.0063 (12)0.0098 (13)
O30.0638 (19)0.0536 (18)0.0454 (17)0.0198 (14)0.0187 (15)0.0289 (15)
O40.0462 (17)0.068 (2)0.0481 (17)0.0108 (15)0.0218 (15)0.0174 (15)
O50.0597 (18)0.0574 (18)0.0525 (17)0.0234 (14)0.0305 (15)0.0327 (15)
N10.0378 (18)0.0329 (18)0.0318 (17)0.0021 (15)0.0107 (15)0.0080 (15)
N20.0373 (18)0.0305 (17)0.0340 (18)0.0020 (15)0.0107 (15)0.0134 (15)
N30.043 (2)0.042 (2)0.041 (2)0.0027 (16)0.0156 (17)0.0165 (17)
N40.0442 (19)0.0408 (19)0.0325 (18)0.0096 (16)0.0151 (16)0.0092 (15)
N50.0397 (18)0.0361 (17)0.0258 (16)0.0100 (14)0.0106 (14)0.0089 (15)
N60.053 (2)0.045 (2)0.0325 (18)0.0139 (17)0.0164 (16)0.0110 (16)
C10.057 (3)0.036 (2)0.043 (2)0.001 (2)0.012 (2)0.010 (2)
C20.050 (3)0.058 (3)0.054 (3)0.016 (2)0.008 (2)0.020 (2)
C30.032 (2)0.083 (4)0.052 (3)0.001 (3)0.013 (2)0.014 (3)
C40.037 (2)0.055 (3)0.040 (2)0.010 (2)0.016 (2)0.010 (2)
C50.038 (2)0.032 (2)0.0241 (19)0.0078 (18)0.0155 (17)0.0004 (17)
C60.037 (2)0.033 (2)0.0236 (19)0.0105 (18)0.0107 (17)0.0037 (17)
C70.059 (3)0.040 (2)0.041 (2)0.020 (2)0.019 (2)0.011 (2)
C80.068 (3)0.033 (2)0.042 (2)0.005 (2)0.022 (2)0.014 (2)
C90.067 (3)0.064 (3)0.048 (3)0.022 (2)0.021 (2)0.017 (2)
C100.072 (3)0.087 (4)0.045 (3)0.011 (3)0.030 (3)0.026 (3)
C110.063 (3)0.068 (3)0.030 (2)0.004 (3)0.020 (2)0.006 (2)
C120.046 (2)0.042 (2)0.032 (2)0.0029 (19)0.0107 (19)0.0053 (19)
C130.0270 (19)0.032 (2)0.0267 (19)0.0024 (16)0.0052 (16)0.0075 (17)
C140.033 (2)0.030 (2)0.027 (2)0.0046 (17)0.0037 (17)0.0100 (17)
C150.058 (3)0.039 (2)0.042 (2)0.022 (2)0.009 (2)0.007 (2)
C160.063 (3)0.047 (3)0.051 (3)0.028 (2)0.008 (2)0.019 (2)
C170.042 (2)0.029 (2)0.028 (2)0.0002 (18)0.0095 (19)0.0121 (17)
C180.030 (2)0.030 (2)0.0287 (19)0.0084 (16)0.0068 (17)0.0146 (17)
C190.046 (2)0.037 (2)0.037 (2)0.0019 (19)0.010 (2)0.0114 (19)
C200.048 (3)0.056 (3)0.045 (3)0.006 (2)0.000 (2)0.028 (2)
C210.062 (3)0.059 (3)0.027 (2)0.005 (2)0.001 (2)0.017 (2)
C220.051 (3)0.043 (2)0.028 (2)0.000 (2)0.010 (2)0.0078 (19)
C230.031 (2)0.0283 (19)0.030 (2)0.0057 (16)0.0089 (17)0.0122 (17)
C240.041 (2)0.028 (2)0.035 (2)0.0080 (18)0.006 (2)0.0080 (18)
Geometric parameters (Å, º) top
Cd1—N52.241 (3)C4—H40.9300
Cd1—N22.304 (3)C5—C61.456 (5)
Cd1—O12.306 (3)C6—C71.394 (5)
Cd1—O52.306 (2)C7—C81.360 (5)
Cd1—N12.355 (3)C7—H70.9300
Cd1—N42.525 (3)C8—H80.9300
O1—C171.263 (4)C9—C101.378 (6)
O2—C171.246 (4)C9—H90.9300
O3—C241.248 (4)C10—C111.367 (6)
O4—C241.262 (4)C10—H100.9300
O5—H5A0.8500C11—C121.372 (5)
O5—H5B0.8500C11—H110.9300
N1—C11.334 (5)C12—C131.387 (5)
N1—C51.352 (4)C12—H120.9300
N2—N31.336 (4)C13—C141.461 (5)
N2—C61.340 (4)C14—C151.389 (5)
N3—C81.336 (4)C15—C161.363 (5)
N3—H3A0.8600C15—H150.9300
N4—C91.331 (5)C16—H160.9300
N4—C131.345 (4)C17—C181.513 (5)
N5—C141.336 (4)C18—C191.385 (5)
N5—N61.343 (4)C18—C231.395 (5)
N6—C161.329 (4)C19—C201.377 (5)
N6—H60.8600C19—H190.9300
C1—C21.369 (5)C20—C211.367 (5)
C1—H10.9300C20—H200.9300
C2—C31.373 (6)C21—C221.372 (5)
C2—H20.9300C21—H210.9300
C3—C41.360 (6)C22—C231.394 (5)
C3—H30.9300C22—H220.9300
C4—C51.389 (5)C23—C241.500 (5)
N5—Cd1—N2146.39 (10)C8—C7—C6105.2 (3)
N5—Cd1—O189.21 (9)C8—C7—H7127.4
N2—Cd1—O1123.55 (9)C6—C7—H7127.4
N5—Cd1—O591.79 (10)N3—C8—C7107.9 (4)
N2—Cd1—O586.61 (10)N3—C8—H8126.1
O1—Cd1—O581.39 (9)C7—C8—H8126.1
N5—Cd1—N1128.46 (10)N4—C9—C10123.9 (4)
N2—Cd1—N170.85 (11)N4—C9—H9118.1
O1—Cd1—N179.65 (10)C10—C9—H9118.1
O5—Cd1—N1134.70 (10)C11—C10—C9117.8 (4)
N5—Cd1—N467.54 (10)C11—C10—H10121.1
N2—Cd1—N486.92 (10)C9—C10—H10121.1
O1—Cd1—N4141.67 (10)C10—C11—C12120.0 (4)
O5—Cd1—N4127.21 (10)C10—C11—H11120.0
N1—Cd1—N491.24 (10)C12—C11—H11120.0
C17—O1—Cd1131.2 (2)C11—C12—C13118.7 (4)
Cd1—O5—H5A130.4C11—C12—H12120.7
Cd1—O5—H5B107.9C13—C12—H12120.7
H5A—O5—H5B116.4N4—C13—C12122.0 (3)
C1—N1—C5117.7 (3)N4—C13—C14115.6 (3)
C1—N1—Cd1125.5 (3)C12—C13—C14122.4 (3)
C5—N1—Cd1116.6 (2)N5—C14—C15110.1 (3)
N3—N2—C6105.9 (3)N5—C14—C13117.4 (3)
N3—N2—Cd1136.5 (2)C15—C14—C13132.5 (3)
C6—N2—Cd1117.0 (2)C16—C15—C14105.1 (3)
C8—N3—N2111.2 (3)C16—C15—H15127.4
C8—N3—H3A124.4C14—C15—H15127.4
N2—N3—H3A124.4N6—C16—C15108.0 (3)
C9—N4—C13117.6 (3)N6—C16—H16126.0
C9—N4—Cd1127.5 (3)C15—C16—H16126.0
C13—N4—Cd1114.9 (2)O2—C17—O1126.4 (3)
C14—N5—N6105.8 (3)O2—C17—C18117.4 (3)
C14—N5—Cd1124.4 (2)O1—C17—C18116.1 (3)
N6—N5—Cd1129.7 (2)C19—C18—C23119.4 (3)
C16—N6—N5111.1 (3)C19—C18—C17118.2 (3)
C16—N6—H6124.5C23—C18—C17122.3 (3)
N5—N6—H6124.5C20—C19—C18121.0 (4)
N1—C1—C2123.7 (4)C20—C19—H19119.5
N1—C1—H1118.2C18—C19—H19119.5
C2—C1—H1118.2C21—C20—C19119.9 (4)
C1—C2—C3118.1 (4)C21—C20—H20120.1
C1—C2—H2121.0C19—C20—H20120.1
C3—C2—H2121.0C20—C21—C22119.9 (4)
C4—C3—C2119.9 (4)C20—C21—H21120.0
C4—C3—H3120.1C22—C21—H21120.0
C2—C3—H3120.1C21—C22—C23121.4 (4)
C3—C4—C5119.2 (4)C21—C22—H22119.3
C3—C4—H4120.4C23—C22—H22119.3
C5—C4—H4120.4C22—C23—C18118.3 (3)
N1—C5—C4121.4 (4)C22—C23—C24119.2 (3)
N1—C5—C6115.9 (3)C18—C23—C24122.5 (3)
C4—C5—C6122.6 (3)O3—C24—O4124.5 (4)
N2—C6—C7109.8 (3)O3—C24—C23118.6 (3)
N2—C6—C5119.2 (3)O4—C24—C23116.8 (3)
C7—C6—C5131.0 (3)
N5—Cd1—O1—C1756.3 (3)C3—C4—C5—N10.5 (5)
N2—Cd1—O1—C17115.7 (3)C3—C4—C5—C6179.5 (3)
O5—Cd1—O1—C1735.6 (3)N3—N2—C6—C70.7 (4)
N1—Cd1—O1—C17174.3 (3)Cd1—N2—C6—C7171.7 (2)
N4—Cd1—O1—C17107.0 (3)N3—N2—C6—C5178.9 (3)
N5—Cd1—N1—C131.9 (3)Cd1—N2—C6—C56.6 (4)
N2—Cd1—N1—C1179.9 (3)N1—C5—C6—N22.3 (5)
O1—Cd1—N1—C148.7 (3)C4—C5—C6—N2178.6 (3)
O5—Cd1—N1—C1115.5 (3)N1—C5—C6—C7175.5 (4)
N4—Cd1—N1—C193.8 (3)C4—C5—C6—C73.6 (6)
N5—Cd1—N1—C5152.8 (2)N2—C6—C7—C80.6 (4)
N2—Cd1—N1—C54.6 (2)C5—C6—C7—C8178.6 (4)
O1—Cd1—N1—C5126.5 (2)N2—N3—C8—C70.1 (4)
O5—Cd1—N1—C559.8 (3)C6—C7—C8—N30.3 (4)
N4—Cd1—N1—C590.9 (2)C13—N4—C9—C100.0 (7)
N5—Cd1—N2—N353.0 (4)Cd1—N4—C9—C10177.2 (3)
O1—Cd1—N2—N3112.4 (3)N4—C9—C10—C110.3 (7)
O5—Cd1—N2—N335.1 (3)C9—C10—C11—C120.3 (7)
N1—Cd1—N2—N3175.1 (3)C10—C11—C12—C130.0 (6)
N4—Cd1—N2—N392.5 (3)C9—N4—C13—C120.3 (5)
N5—Cd1—N2—C6137.6 (2)Cd1—N4—C13—C12177.2 (3)
O1—Cd1—N2—C656.9 (3)C9—N4—C13—C14179.6 (3)
O5—Cd1—N2—C6134.2 (2)Cd1—N4—C13—C142.1 (4)
N1—Cd1—N2—C65.8 (2)C11—C12—C13—N40.3 (6)
N4—Cd1—N2—C698.2 (2)C11—C12—C13—C14179.5 (4)
C6—N2—N3—C80.5 (4)N6—N5—C14—C150.7 (4)
Cd1—N2—N3—C8169.6 (3)Cd1—N5—C14—C15175.8 (2)
N5—Cd1—N4—C9177.2 (4)N6—N5—C14—C13178.7 (3)
N2—Cd1—N4—C919.5 (3)Cd1—N5—C14—C134.8 (4)
O1—Cd1—N4—C9126.0 (3)N4—C13—C14—N54.3 (5)
O5—Cd1—N4—C9102.9 (3)C12—C13—C14—N5175.0 (3)
N1—Cd1—N4—C951.2 (4)N4—C13—C14—C15176.5 (4)
N5—Cd1—N4—C130.1 (2)C12—C13—C14—C154.3 (6)
N2—Cd1—N4—C13157.7 (3)N5—C14—C15—C160.0 (5)
O1—Cd1—N4—C1356.8 (3)C13—C14—C15—C16179.2 (4)
O5—Cd1—N4—C1374.3 (3)N5—N6—C16—C151.1 (5)
N1—Cd1—N4—C13131.5 (2)C14—C15—C16—N60.6 (5)
N2—Cd1—N5—C1446.0 (4)Cd1—O1—C17—O230.6 (6)
O1—Cd1—N5—C14146.1 (3)Cd1—O1—C17—C18152.7 (2)
O5—Cd1—N5—C14132.5 (3)O2—C17—C18—C19116.8 (4)
N1—Cd1—N5—C1470.0 (3)O1—C17—C18—C1960.2 (4)
N4—Cd1—N5—C142.6 (3)O2—C17—C18—C2358.5 (5)
N2—Cd1—N5—N6138.4 (3)O1—C17—C18—C23124.5 (4)
O1—Cd1—N5—N629.5 (3)C23—C18—C19—C202.8 (5)
O5—Cd1—N5—N651.8 (3)C17—C18—C19—C20172.6 (4)
N1—Cd1—N5—N6105.6 (3)C18—C19—C20—C210.4 (6)
N4—Cd1—N5—N6178.2 (3)C19—C20—C21—C220.9 (7)
C14—N5—N6—C161.1 (4)C20—C21—C22—C230.2 (6)
Cd1—N5—N6—C16175.2 (3)C21—C22—C23—C182.6 (5)
C5—N1—C1—C21.5 (6)C21—C22—C23—C24175.2 (3)
Cd1—N1—C1—C2176.7 (3)C19—C18—C23—C223.8 (5)
N1—C1—C2—C31.7 (6)C17—C18—C23—C22171.4 (3)
C1—C2—C3—C40.7 (7)C19—C18—C23—C24173.9 (3)
C2—C3—C4—C50.3 (6)C17—C18—C23—C2410.8 (5)
C1—N1—C5—C40.4 (5)C22—C23—C24—O3149.6 (3)
Cd1—N1—C5—C4176.0 (3)C18—C23—C24—O328.2 (5)
C1—N1—C5—C6178.7 (3)C22—C23—C24—O427.2 (5)
Cd1—N1—C5—C63.1 (4)C18—C23—C24—O4155.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.851.842.672 (4)168
O5—H5B···O30.852.072.892 (4)164
N3—H3A···O4i0.861.792.646 (4)176
N6—H6···O20.861.912.700 (4)152
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C8H7N3)2(H2O)]
Mr584.86
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.1546 (7), 10.7709 (7), 12.4900 (9)
α, β, γ (°)64.986 (1), 71.209 (1), 81.618 (1)
V3)1171.90 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.771, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
5869, 4075, 3194
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.064, 1.06
No. of reflections4075
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.851.842.672 (4)168.0
O5—H5B···O30.852.072.892 (4)163.7
N3—H3A···O4i0.861.792.646 (4)176.0
N6—H6···O20.861.912.700 (4)151.9
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The author gratefully acknowledges financial support from the Youthful Foundation of Tianjin Normal University (Natural Science, grant No. 52 L J44).

References

First citationBorrows, A. D., Chan, C. M., Chowdhry, M. M., Mcgrady, J. E. & Mingos, D. M. P. (1995). Chem. Soc. Rev. 24, 329–340.
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS
First citationHu, T.-L., Zou, R.-Q., Li, J.-R. & Bu, X.-H. (2008). Dalton Trans. pp. 1302–1311.  Web of Science CSD CrossRef
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–110.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWan, Y.-H., Zhang, L.-P., Jin, L.-P., Gao, S. & Lu, S.-Z. (2003). Inorg. Chem. 42, 4985–4994.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds