metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1336-m1337

catena-Poly[[(5-carb­­oxy-2H-1,2,3-triazole-4-carboxyl­ato-κ2N3,O4)sodium]-di-μ-aqua-κ4O:O]

aThe Provincial Key Laboratory of Biological Medicine Formulation, School of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
*Correspondence e-mail: shajq2002@126.com

(Received 1 September 2010; accepted 18 September 2010; online 30 September 2010)

In the title coordination polymer, [Na(C4H2N3O4)(H2O)2]n, the NaI atom is six-coordinated by one O atom and one N atom from a 2H-1,2,3-triazole-4-carb­oxy-5-carboxyl­ate ligand and four O atoms from four water mol­ecules, forming a distorted octa­hedal geometry. The NaI atoms are bridged by water mol­ecules into a chain structure along [100]. Inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds connect the chains. An intra­molecular O—H⋯O hydrogen bond between the carboxyl­ate groups is observed.

Related literature

For general background to the design and synthesis of metal–organic frameworks (MOFs), see: Chen et al. (2009[Chen, X., Wan, C., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]); Su et al. (2004[Su, C. Y., Goforth, A. M., Smith, M. D., Pellechia, P. J. & zur Loye, H. C. (2004). J. Am. Chem. Soc. 126, 3576-3586.]); Xiao et al. (2006[Xiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528-6541.]). For the use of heterocyclic dicarb­oxy­lic acids in MOFs, see: Gao et al. (2006[Gao, H.-L., Yi, L., Zhao, B., Zhao, X.-Q., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5980-5988.]); Mukherjee et al. (2004[Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. 126, 2464-2473.]); Shi et al. (2006[Shi, W., Chen, X.-Y., Xu, N., Song, H.-B., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Eur. J. Inorg. Chem. 23, 4931-4937.]); Sun et al. (2005[Sun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]). For metal complexes with 2H-1,2,3-triazole-4,5-dicarb­oxy­lic acid, see: Liu et al. (2008[Liu, G.-F., Ren, Z.-G., Chen, Y., Liu, D., Li, H.-X., Zhang, Y. & Lang, J.-P. (2008). Inorg. Chem. Commun. 11, 225-229.]); Yue et al. (2008[Yue, Y.-F., Liang, J., Gao, E.-Q., Fang, C.-J., Yan, Z.-G. & Yan, C.-H. (2008). Inorg. Chem. 47, 6115-6117.]); Zheng et al. (2009[Zheng, Z. B., Wua, R. T., Lib, J. K. & Sun, Y. F. (2009). J. Coord. Chem. 62, 2324-2336.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C4H2N3O4)(H2O)2]

  • Mr = 215.11

  • Monoclinic, P 21 /n

  • a = 6.8706 (9) Å

  • b = 10.6280 (13) Å

  • c = 11.5585 (14) Å

  • β = 95.647 (1)°

  • V = 839.91 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.18 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.965

  • 4453 measured reflections

  • 1658 independent reflections

  • 1509 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.00

  • 1658 reflections

  • 148 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.95 (2) 1.74 (2) 2.652 (2) 158 (2)
O3—H3⋯O1 0.82 1.65 2.468 (2) 177
O5—H5A⋯N3ii 0.85 (2) 2.15 (2) 2.949 (2) 155 (2)
O5—H5B⋯O3iii 0.82 (2) 2.13 (2) 2.923 (2) 163 (2)
O6—H6A⋯O1i 0.84 (2) 2.07 (2) 2.902 (2) 173 (2)
O6—H6B⋯O4iii 0.80 (2) 2.03 (2) 2.819 (2) 173 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, there has been intense research effort on the design and synthesis of metal-organic frameworks (MOFs) owing to their intriguing variety of architectures and their tremendous potential applications in many fields (Chen et al., 2009; Rosi et al., 2003; Su et al., 2004; Xiao et al., 2006). As one kind of well known ligands, heterocyclic dicarboxylic acids have been used to prepare MOFs with multi-dimensional structures because of the hetero atoms may serve as potential coordinating sites (Gao et al., 2006; Mukherjee et al., 2004; Shi et al., 2006; Sun et al., 2005), such as 2H-1,2,3-triazole-4,5-dicarboxylic acid (H2tda). The three triazole N atoms of H2tda can coordinate to various metals (such as Mn, Cd and K), resulting in the formation of intriguing multi-dimensional structures with complicated topologies (Liu et al., 2008; Yue et al., 2008; Zheng et al., 2009).

In the title coordination polymer (Fig. 1), the NaI atom is six-coordinated by one O atom and one N atom from one Htda ligand, and four O atoms from water molecules, with a slightly distorted octahedral geometry. Furthermore, the NaI atoms are bridged by the water molecules, leading to a one-dimensional chain structure, as shown in Fig. 2. Intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds connect the chains (Table 1).

Related literature top

For general background to the design and synthesis of metal–organic frameworks (MOFs), see: Chen et al. (2009); Rosi et al. (2003); Su et al. (2004); Xiao et al. (2006). For the use of heterocyclic dicarboxylic acids in MOFs, see: Gao et al. (2006); Mukherjee et al. (2004); Shi et al. (2006); Sun et al. (2005). For metal complexes with 2H-1,2,3-triazole-4,5-dicarboxylic acid, see: Liu et al. (2008); Yue et al. (2008); Zheng et al. (2009).

Experimental top

All chemicals were purchased from commercial sources and used without further purification. A mixture of H2tda and NaOH in a molar ratio of 1:1 was dissolved in water. Colorless block crystals of the title compound were obtained by slow evaporation of the filtrate over a period of 3 d.

Refinement top

H atoms were located from a difference Fourier map. H3 attached to the carboxyl O3 was refined as riding atom, with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O). The other H atoms were refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with symmetry-related atoms to complete the Na coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 2-y, 2-z; (ii) 1-x, 2-y, 2-z.]
[Figure 2] Fig. 2. View of the one-dimensional chain in the title compound.
catena-Poly[[(5-carboxy-2H-1,2,3-triazole-4-carboxylato- κ2N3,O4)sodium]-di-µ-aqua-κ4O:O] top
Crystal data top
[Na(C4H2N3O4)(H2O)2]F(000) = 440
Mr = 215.11Dx = 1.701 Mg m3
Dm = 1.701 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2984 reflections
a = 6.8706 (9) Åθ = 2.6–28.2°
b = 10.6280 (13) ŵ = 0.20 mm1
c = 11.5585 (14) ÅT = 293 K
β = 95.647 (1)°Block, colorless
V = 839.91 (18) Å30.23 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
1658 independent reflections
Radiation source: fine-focus sealed tube1509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.955, Tmax = 0.965k = 913
4453 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3697P]
where P = (Fo2 + 2Fc2)/3
1658 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.47 e Å3
4 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Na(C4H2N3O4)(H2O)2]V = 839.91 (18) Å3
Mr = 215.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8706 (9) ŵ = 0.20 mm1
b = 10.6280 (13) ÅT = 293 K
c = 11.5585 (14) Å0.23 × 0.22 × 0.18 mm
β = 95.647 (1)°
Data collection top
Bruker APEX CCD
diffractometer
1658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1509 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.965Rint = 0.026
4453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.47 e Å3
1658 reflectionsΔρmin = 0.59 e Å3
148 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H5B0.091 (4)1.1695 (18)0.910 (3)0.081 (10)*
H5A0.028 (4)1.076 (3)0.8361 (16)0.071 (8)*
H6A0.503 (3)1.018 (2)1.1923 (15)0.054 (7)*
H6B0.433 (4)1.1154 (18)1.136 (2)0.056 (7)*
Na10.25079 (9)0.92974 (6)0.99461 (6)0.0348 (2)
O10.11703 (17)0.54042 (11)0.85612 (9)0.0331 (3)
O20.15004 (18)0.74783 (11)0.87493 (10)0.0347 (3)
N10.34905 (19)0.72021 (12)1.09099 (11)0.0260 (3)
O60.4709 (2)1.04572 (12)1.12560 (11)0.0364 (3)
O30.20462 (18)0.34772 (11)0.96846 (10)0.0348 (3)
H30.17330.41260.93300.042*
O50.0576 (2)1.09590 (12)0.90710 (11)0.0388 (3)
N30.42462 (19)0.54647 (13)1.19491 (11)0.0276 (3)
O40.3474 (2)0.29745 (11)1.14248 (11)0.0420 (3)
N20.4322 (2)0.67011 (13)1.18801 (11)0.0282 (3)
C20.3282 (2)0.51189 (14)1.09393 (12)0.0225 (3)
C40.2933 (2)0.37598 (15)1.06997 (14)0.0279 (3)
C30.2809 (2)0.62053 (14)1.02900 (12)0.0216 (3)
C10.1755 (2)0.63899 (14)0.91084 (12)0.0243 (3)
H20.499 (3)0.719 (2)1.2488 (19)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0355 (4)0.0270 (4)0.0401 (4)0.0001 (3)0.0051 (3)0.0002 (3)
O10.0393 (6)0.0318 (6)0.0254 (6)0.0025 (5)0.0109 (5)0.0054 (5)
O20.0422 (7)0.0302 (6)0.0280 (6)0.0002 (5)0.0147 (5)0.0058 (5)
N10.0289 (7)0.0246 (7)0.0226 (6)0.0010 (5)0.0072 (5)0.0012 (5)
O60.0493 (8)0.0284 (7)0.0300 (6)0.0013 (5)0.0030 (5)0.0014 (5)
O30.0438 (7)0.0226 (6)0.0366 (6)0.0034 (5)0.0025 (5)0.0036 (5)
O50.0505 (8)0.0310 (7)0.0327 (7)0.0001 (6)0.0066 (6)0.0020 (5)
N30.0309 (7)0.0281 (7)0.0226 (6)0.0028 (5)0.0042 (5)0.0021 (5)
O40.0553 (8)0.0258 (6)0.0443 (7)0.0062 (5)0.0022 (6)0.0097 (5)
N20.0334 (7)0.0278 (7)0.0212 (6)0.0014 (6)0.0088 (5)0.0025 (5)
C20.0216 (7)0.0241 (8)0.0215 (7)0.0018 (5)0.0003 (5)0.0006 (6)
C40.0274 (8)0.0241 (8)0.0323 (8)0.0011 (6)0.0040 (6)0.0001 (6)
C30.0206 (7)0.0233 (7)0.0198 (7)0.0008 (5)0.0035 (5)0.0007 (5)
C10.0221 (7)0.0292 (8)0.0204 (7)0.0004 (6)0.0050 (5)0.0006 (6)
Geometric parameters (Å, º) top
Na1—O52.3747 (15)O3—C41.303 (2)
Na1—O62.3765 (14)O3—H30.8200
Na1—O22.4377 (13)O5—H5B0.82 (2)
Na1—O6i2.4855 (15)O5—H5A0.85 (2)
Na1—O5ii2.5157 (16)N3—N21.3178 (19)
Na1—N12.5510 (14)N3—C21.336 (2)
O1—C11.2683 (19)O4—C41.215 (2)
O2—C11.2356 (19)N2—H20.95 (2)
N1—N21.3196 (18)C2—C31.398 (2)
N1—C31.3375 (19)C2—C41.486 (2)
O6—H6A0.84 (2)C3—C11.4946 (19)
O6—H6B0.80 (2)
O5—Na1—O6100.34 (5)C3—N1—Na1113.19 (9)
O5—Na1—O2103.44 (5)Na1—O6—Na1i100.06 (5)
O6—Na1—O2154.19 (5)Na1—O6—H6A120.0 (17)
O5—Na1—O6i96.45 (5)Na1i—O6—H6A113.8 (17)
O6—Na1—O6i79.94 (5)Na1—O6—H6B112.2 (18)
O2—Na1—O6i87.54 (5)Na1i—O6—H6B105.3 (19)
O5—Na1—O5ii79.20 (5)H6A—O6—H6B105 (2)
O6—Na1—O5ii106.25 (5)C4—O3—H3109.5
O2—Na1—O5ii88.03 (5)Na1—O5—Na1ii100.80 (5)
O6i—Na1—O5ii172.90 (5)Na1—O5—H5B124 (2)
O5—Na1—N1161.44 (5)Na1ii—O5—H5B109 (2)
O6—Na1—N192.87 (5)Na1—O5—H5A107.1 (19)
O2—Na1—N166.65 (4)Na1ii—O5—H5A105.9 (19)
O6i—Na1—N198.66 (5)H5B—O5—H5A109 (3)
O5ii—Na1—N184.65 (5)N2—N3—C2103.92 (12)
O5—Na1—Na1i100.92 (4)N3—N2—N1115.94 (12)
O6—Na1—Na1i41.05 (3)N3—N2—H2121.2 (13)
O2—Na1—Na1i123.06 (4)N1—N2—H2122.8 (13)
O6i—Na1—Na1i38.90 (3)N3—C2—C3108.12 (13)
O5ii—Na1—Na1i147.18 (5)N3—C2—C4119.18 (13)
N1—Na1—Na1i97.61 (4)C3—C2—C4132.70 (14)
O5—Na1—Na1ii40.97 (4)O4—C4—O3123.18 (15)
O6—Na1—Na1ii107.45 (5)O4—C4—C2120.42 (15)
O2—Na1—Na1ii97.09 (4)O3—C4—C2116.40 (13)
O6i—Na1—Na1ii137.15 (4)N1—C3—C2108.42 (12)
O5ii—Na1—Na1ii38.23 (3)N1—C3—C1119.88 (13)
N1—Na1—Na1ii122.34 (4)C2—C3—C1131.70 (13)
Na1i—Na1—Na1ii132.86 (4)O2—C1—O1125.34 (14)
C1—O2—Na1121.94 (9)O2—C1—C3118.01 (13)
N2—N1—C3103.59 (12)O1—C1—C3116.64 (13)
N2—N1—Na1142.86 (10)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2iii0.95 (2)1.74 (2)2.652 (2)158 (2)
O3—H3···O10.821.652.468 (2)177
O5—H5A···N3iv0.85 (2)2.15 (2)2.949 (2)155 (2)
O5—H5B···O3v0.82 (2)2.13 (2)2.923 (2)163 (2)
O6—H6A···O1iii0.84 (2)2.07 (2)2.902 (2)173 (2)
O6—H6B···O4v0.80 (2)2.03 (2)2.819 (2)173 (2)
Symmetry codes: (iii) x+1/2, y+3/2, z+1/2; (iv) x1/2, y+3/2, z1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Na(C4H2N3O4)(H2O)2]
Mr215.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.8706 (9), 10.6280 (13), 11.5585 (14)
β (°) 95.647 (1)
V3)839.91 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.23 × 0.22 × 0.18
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4453, 1658, 1509
Rint0.026
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.00
No. of reflections1658
No. of parameters148
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.59

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.95 (2)1.74 (2)2.652 (2)158 (2)
O3—H3···O10.821.652.468 (2)177
O5—H5A···N3ii0.85 (2)2.15 (2)2.949 (2)155 (2)
O5—H5B···O3iii0.82 (2)2.13 (2)2.923 (2)163 (2)
O6—H6A···O1i0.84 (2)2.07 (2)2.902 (2)173 (2)
O6—H6B···O4iii0.80 (2)2.03 (2)2.819 (2)173 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation (grant No. 20901031), the Natural Science Foundation (No. B200916) and the Education Ministry Key Teachers Foundation (1155 G53) of Heilongjiang Province and the Talent Training Fund of Jiamusi University (No. RC2009–034).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Wan, C., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGao, H.-L., Yi, L., Zhao, B., Zhao, X.-Q., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5980–5988.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, G.-F., Ren, Z.-G., Chen, Y., Liu, D., Li, H.-X., Zhang, Y. & Lang, J.-P. (2008). Inorg. Chem. Commun. 11, 225–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. 126, 2464–2473.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W., Chen, X.-Y., Xu, N., Song, H.-B., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Eur. J. Inorg. Chem. 23, 4931–4937.  Web of Science CSD CrossRef Google Scholar
First citationSu, C. Y., Goforth, A. M., Smith, M. D., Pellechia, P. J. & zur Loye, H. C. (2004). J. Am. Chem. Soc. 126, 3576–3586.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528–6541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYue, Y.-F., Liang, J., Gao, E.-Q., Fang, C.-J., Yan, Z.-G. & Yan, C.-H. (2008). Inorg. Chem. 47, 6115–6117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, Z. B., Wua, R. T., Lib, J. K. & Sun, Y. F. (2009). J. Coord. Chem. 62, 2324–2336.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1336-m1337
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds