organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-5-iso­butyl-2-sulfanyl­idene­imidazolidin-4-one

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bLiaocheng International Peace Hospital, Shandong 252059, People's Republic of China
*Correspondence e-mail: lkzlc@163.com

(Received 24 August 2010; accepted 17 September 2010; online 30 September 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C9H14N2O2S. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds, forming a chain along the a axis.

Related literature

For biological activity of thio­hydantoins, see: Lopez & Trigo (1985[Lopez, C. A. & Trigo, G. G. (1985). Adv. Heterocycl. Chem. 38, 177-179.]). For a related structure, see: Sulbaran et al. (2007[Sulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543-o545.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N2O2S

  • Mr = 214.28

  • Triclinic, [P \overline 1]

  • a = 7.1856 (8) Å

  • b = 9.7567 (11) Å

  • c = 16.4226 (15) Å

  • α = 101.231 (2)°

  • β = 93.965 (1)°

  • γ = 90.491 (1)°

  • V = 1126.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.42 × 0.35 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.897, Tmax = 0.964

  • 5877 measured reflections

  • 3916 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.138

  • S = 1.02

  • 3916 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.99 2.834 (3) 167
N4—H4⋯O4ii 0.86 2.01 2.850 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiohydantoins are known to exhibit a wide range of biological activities, including anticonvulsant, antiarrhythmic, anti-inflammatory, and antidiabetic properties, as well as herbicidal and fungicidal activity (Lopez & Trigo, 1985).

In the title compound (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compound (Sulbaran et al., 2007). In the crystal structure, there exist intermolecular N—H···O hydrogen bonds (Table 1). The supramolecular chain structure along the a axis, which is built by weak intermolecular N—H···O hydrogen bonds.

Related literature top

For biological activity of thiohydantoins, see: Lopez & Trigo (1985). For a related structure, see: Sulbaran et al. (2007).

Experimental top

2-Amino-4-methylpentanoic acid (10 mmol) and NH4SCN (10 mmol) was dissolved in a 15 ml acetic anhydride and 2 ml acetic acid mixture and transferred in a round-bottom flask. The mixture was warmed, with agitation, to 373 K over a period of 1 h. The resulting solution was cooled in a ice/water mixture and stored in a freezer overnight. Crystal of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation. Elemental analysis: calculated for C9H14N2O2S: C 50.45, H 6.59, N 13.07%; found: C 50.53, H 6.46, N 13.14%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H 0.96–0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.
1-Acetyl-5-isobutyl-2-sulfanylideneimidazolidin-4-one top
Crystal data top
C9H14N2O2SZ = 4
Mr = 214.28F(000) = 456
Triclinic, P1Dx = 1.264 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1856 (8) ÅCell parameters from 1409 reflections
b = 9.7567 (11) Åθ = 2.5–22.5°
c = 16.4226 (15) ŵ = 0.27 mm1
α = 101.231 (2)°T = 298 K
β = 93.965 (1)°Block, colourless
γ = 90.491 (1)°0.42 × 0.35 × 0.14 mm
V = 1126.3 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3916 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.897, Tmax = 0.964k = 911
5877 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2948P]
where P = (Fo2 + 2Fc2)/3
3916 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H14N2O2Sγ = 90.491 (1)°
Mr = 214.28V = 1126.3 (2) Å3
Triclinic, P1Z = 4
a = 7.1856 (8) ÅMo Kα radiation
b = 9.7567 (11) ŵ = 0.27 mm1
c = 16.4226 (15) ÅT = 298 K
α = 101.231 (2)°0.42 × 0.35 × 0.14 mm
β = 93.965 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3916 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2199 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.964Rint = 0.023
5877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
3916 reflectionsΔρmin = 0.17 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3760 (3)0.2881 (3)0.16750 (16)0.0404 (7)
N20.0770 (3)0.2612 (3)0.18054 (17)0.0523 (8)
H20.04170.27100.17460.063*
N30.0219 (3)0.7835 (3)0.17203 (16)0.0429 (7)
N40.3235 (4)0.7558 (3)0.18537 (17)0.0518 (8)
H40.44060.76640.18000.062*
O10.0752 (3)0.1110 (3)0.27212 (17)0.0746 (8)
O20.6815 (3)0.2536 (3)0.16880 (16)0.0638 (7)
O30.3503 (3)0.6072 (3)0.27747 (17)0.0748 (8)
O40.2837 (3)0.7469 (3)0.17042 (16)0.0649 (7)
S10.13550 (12)0.41653 (10)0.06933 (6)0.0563 (3)
S20.23535 (13)0.90538 (11)0.07109 (6)0.0626 (3)
C10.2002 (4)0.3238 (3)0.13812 (19)0.0403 (8)
C20.1575 (4)0.1820 (4)0.2329 (2)0.0520 (9)
C30.3646 (4)0.2041 (4)0.2328 (2)0.0466 (9)
H30.42430.11410.21580.056*
C40.4495 (5)0.2774 (4)0.3174 (2)0.0569 (10)
H4A0.57330.31210.31060.068*
H4B0.37470.35760.33730.068*
C50.4652 (6)0.1881 (4)0.3833 (2)0.0698 (11)
H50.33940.15430.39000.084*
C60.5376 (7)0.2777 (5)0.4657 (3)0.1015 (16)
H6A0.66420.30680.46210.152*
H6B0.53280.22450.50890.152*
H6C0.46160.35850.47820.152*
C70.5853 (8)0.0619 (5)0.3603 (3)0.121 (2)
H7A0.70660.09160.34860.182*
H7B0.52830.00070.31190.182*
H7C0.59720.01310.40580.182*
C80.5509 (4)0.3120 (3)0.1399 (2)0.0453 (8)
C90.5730 (5)0.4020 (4)0.0785 (2)0.0639 (11)
H9A0.70250.40900.06860.096*
H9B0.52770.49340.09960.096*
H9C0.50300.36210.02730.096*
C100.1898 (4)0.8166 (3)0.1424 (2)0.0427 (8)
C110.2580 (5)0.6769 (4)0.2376 (2)0.0502 (9)
C120.0504 (4)0.6996 (3)0.2371 (2)0.0461 (9)
H120.01750.60990.22020.055*
C130.0073 (5)0.7752 (4)0.3214 (2)0.0573 (10)
H13A0.07450.85640.34060.069*
H13B0.13290.80860.31420.069*
C140.0024 (6)0.6886 (4)0.3882 (2)0.0724 (12)
H140.12550.65670.39550.087*
C150.1284 (9)0.5618 (6)0.3658 (3)0.126 (2)
H15A0.12930.51550.41220.190*
H15B0.08400.49920.31890.190*
H15C0.25260.58940.35180.190*
C160.0487 (7)0.7818 (6)0.4705 (3)0.1089 (17)
H16A0.17470.81270.46550.163*
H16B0.03520.86140.48310.163*
H16C0.03550.72960.51430.163*
C170.1606 (4)0.8094 (4)0.1444 (2)0.0471 (9)
C180.2005 (5)0.9099 (4)0.0897 (2)0.0630 (10)
H18A0.33300.91690.08000.094*
H18B0.14660.87840.03760.094*
H18C0.14780.99980.11570.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0242 (14)0.0472 (17)0.0518 (16)0.0029 (11)0.0067 (12)0.0132 (14)
N20.0207 (14)0.067 (2)0.074 (2)0.0038 (13)0.0043 (13)0.0246 (17)
N30.0261 (14)0.0508 (17)0.0527 (17)0.0051 (12)0.0052 (12)0.0115 (15)
N40.0248 (15)0.0608 (19)0.074 (2)0.0033 (13)0.0075 (14)0.0212 (17)
O10.0495 (16)0.092 (2)0.094 (2)0.0114 (14)0.0122 (14)0.0441 (18)
O20.0275 (13)0.0854 (19)0.0865 (18)0.0089 (12)0.0085 (12)0.0342 (16)
O30.0490 (16)0.089 (2)0.098 (2)0.0208 (14)0.0066 (14)0.0459 (18)
O40.0317 (13)0.0777 (18)0.0915 (19)0.0010 (12)0.0099 (13)0.0299 (16)
S10.0400 (5)0.0709 (7)0.0607 (6)0.0080 (4)0.0020 (4)0.0209 (5)
S20.0469 (6)0.0798 (8)0.0682 (7)0.0025 (5)0.0149 (5)0.0280 (6)
C10.0262 (17)0.044 (2)0.048 (2)0.0048 (14)0.0041 (14)0.0028 (17)
C20.0330 (19)0.062 (2)0.065 (2)0.0020 (17)0.0063 (17)0.020 (2)
C30.0324 (18)0.051 (2)0.060 (2)0.0032 (15)0.0030 (16)0.0207 (19)
C40.044 (2)0.064 (2)0.064 (2)0.0014 (18)0.0012 (18)0.019 (2)
C50.064 (3)0.085 (3)0.064 (3)0.005 (2)0.001 (2)0.026 (2)
C60.104 (4)0.130 (4)0.068 (3)0.016 (3)0.008 (3)0.021 (3)
C70.152 (5)0.109 (4)0.106 (4)0.043 (4)0.021 (4)0.037 (4)
C80.0260 (18)0.051 (2)0.060 (2)0.0049 (15)0.0078 (16)0.0102 (19)
C90.042 (2)0.073 (3)0.085 (3)0.0027 (19)0.0208 (19)0.031 (2)
C100.0293 (18)0.045 (2)0.052 (2)0.0036 (15)0.0036 (15)0.0055 (17)
C110.036 (2)0.055 (2)0.062 (2)0.0085 (17)0.0075 (17)0.016 (2)
C120.0333 (18)0.049 (2)0.058 (2)0.0047 (15)0.0077 (16)0.0141 (19)
C130.049 (2)0.064 (2)0.062 (2)0.0079 (18)0.0116 (18)0.016 (2)
C140.067 (3)0.085 (3)0.072 (3)0.008 (2)0.011 (2)0.028 (3)
C150.173 (6)0.110 (4)0.108 (4)0.037 (4)0.031 (4)0.044 (4)
C160.115 (4)0.143 (5)0.070 (3)0.022 (4)0.023 (3)0.020 (3)
C170.0322 (19)0.051 (2)0.058 (2)0.0043 (16)0.0054 (16)0.0091 (19)
C180.040 (2)0.072 (3)0.079 (3)0.0074 (18)0.0009 (19)0.023 (2)
Geometric parameters (Å, º) top
N1—C11.393 (4)C6—H6B0.9600
N1—C81.398 (4)C6—H6C0.9600
N1—C31.478 (4)C7—H7A0.9600
N2—C21.368 (4)C7—H7B0.9600
N2—C11.372 (4)C7—H7C0.9600
N2—H20.8600C8—C91.476 (5)
N3—C101.390 (4)C9—H9A0.9600
N3—C171.399 (4)C9—H9B0.9600
N3—C121.472 (4)C9—H9C0.9600
N4—C101.361 (4)C11—C121.510 (4)
N4—C111.363 (4)C12—C131.524 (4)
N4—H40.8600C12—H120.9800
O1—C21.209 (4)C13—C141.508 (5)
O2—C81.218 (4)C13—H13A0.9700
O3—C111.205 (4)C13—H13B0.9700
O4—C171.217 (4)C14—C151.497 (6)
S1—C11.626 (3)C14—C161.534 (5)
S2—C101.635 (3)C14—H140.9800
C2—C31.502 (4)C15—H15A0.9600
C3—C41.517 (5)C15—H15B0.9600
C3—H30.9800C15—H15C0.9600
C4—C51.515 (5)C16—H16A0.9600
C4—H4A0.9700C16—H16B0.9600
C4—H4B0.9700C16—H16C0.9600
C5—C71.512 (6)C17—C181.471 (5)
C5—C61.517 (5)C18—H18A0.9600
C5—H50.9800C18—H18B0.9600
C6—H6A0.9600C18—H18C0.9600
C1—N1—C8129.4 (3)C8—C9—H9A109.5
C1—N1—C3111.9 (2)C8—C9—H9B109.5
C8—N1—C3118.6 (3)H9A—C9—H9B109.5
C2—N2—C1114.9 (3)C8—C9—H9C109.5
C2—N2—H2122.6H9A—C9—H9C109.5
C1—N2—H2122.6H9B—C9—H9C109.5
C10—N3—C17129.3 (3)N4—C10—N3105.3 (3)
C10—N3—C12111.7 (2)N4—C10—S2123.4 (2)
C17—N3—C12118.8 (3)N3—C10—S2131.3 (3)
C10—N4—C11115.1 (3)O3—C11—N4126.2 (3)
C10—N4—H4122.5O3—C11—C12127.9 (3)
C11—N4—H4122.5N4—C11—C12105.9 (3)
N2—C1—N1104.9 (3)N3—C12—C11101.5 (3)
N2—C1—S1123.4 (2)N3—C12—C13112.7 (3)
N1—C1—S1131.7 (2)C11—C12—C13112.0 (3)
O1—C2—N2125.9 (3)N3—C12—H12110.1
O1—C2—C3127.8 (3)C11—C12—H12110.1
N2—C2—C3106.3 (3)C13—C12—H12110.1
N1—C3—C2101.6 (2)C14—C13—C12115.1 (3)
N1—C3—C4113.5 (3)C14—C13—H13A108.5
C2—C3—C4111.9 (3)C12—C13—H13A108.5
N1—C3—H3109.9C14—C13—H13B108.5
C2—C3—H3109.9C12—C13—H13B108.5
C4—C3—H3109.9H13A—C13—H13B107.5
C5—C4—C3115.3 (3)C15—C14—C13112.9 (4)
C5—C4—H4A108.5C15—C14—C16111.7 (4)
C3—C4—H4A108.5C13—C14—C16108.9 (4)
C5—C4—H4B108.5C15—C14—H14107.7
C3—C4—H4B108.5C13—C14—H14107.7
H4A—C4—H4B107.5C16—C14—H14107.7
C7—C5—C4113.2 (4)C14—C15—H15A109.5
C7—C5—C6110.9 (4)C14—C15—H15B109.5
C4—C5—C6109.3 (3)H15A—C15—H15B109.5
C7—C5—H5107.7C14—C15—H15C109.5
C4—C5—H5107.7H15A—C15—H15C109.5
C6—C5—H5107.7H15B—C15—H15C109.5
C5—C6—H6A109.5C14—C16—H16A109.5
C5—C6—H6B109.5C14—C16—H16B109.5
H6A—C6—H6B109.5H16A—C16—H16B109.5
C5—C6—H6C109.5C14—C16—H16C109.5
H6A—C6—H6C109.5H16A—C16—H16C109.5
H6B—C6—H6C109.5H16B—C16—H16C109.5
C5—C7—H7A109.5O4—C17—N3115.9 (3)
C5—C7—H7B109.5O4—C17—C18122.3 (3)
H7A—C7—H7B109.5N3—C17—C18121.7 (3)
C5—C7—H7C109.5C17—C18—H18A109.5
H7A—C7—H7C109.5C17—C18—H18B109.5
H7B—C7—H7C109.5H18A—C18—H18B109.5
O2—C8—N1116.2 (3)C17—C18—H18C109.5
O2—C8—C9122.6 (3)H18A—C18—H18C109.5
N1—C8—C9121.1 (3)H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.992.834 (3)167
N4—H4···O4ii0.862.012.850 (3)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H14N2O2S
Mr214.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1856 (8), 9.7567 (11), 16.4226 (15)
α, β, γ (°)101.231 (2), 93.965 (1), 90.491 (1)
V3)1126.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.42 × 0.35 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.897, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
5877, 3916, 2199
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.138, 1.02
No. of reflections3916
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.992.834 (3)167
N4—H4···O4ii0.862.012.850 (3)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support bythe University Student Science and Technology Culture Foundation of Liaocheng University (No. SRT10056HX2).

References

First citationLopez, C. A. & Trigo, G. G. (1985). Adv. Heterocycl. Chem. 38, 177–179.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543–o545.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds