organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­yl)-6-iso­propyl-5,6-di­hydro-4H-pyrrolo­[3,4-c]isoxazole

aSchool of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hyungkim@chonnam.ac.kr

(Received 25 August 2010; accepted 30 August 2010; online 4 September 2010)

The title compound, C14H15ClN2O, contains an eight-membered 5,5-fused bicycle with two substituents. The dihedral angle between the nearly planar eight-membered ring [maximum deviation = 0.033 (2) Å] and the benzene ring is 25.0 (1)°. In the crystal structure, mol­ecules are stacked in columns along the b axis and C—H⋯π inter­actions are observed between the columns.

Related literature

For the synthesis of the title compound, see: Kim & Lee (1994[Kim, H. J. & Lee, J. H. (1994). Heterocycles, 38, 1383-1391.]). For the biological activity of isoxazoles, see: Boyd (1991[Boyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166-185.]); Kim et al. (1994[Kim, H. J., Hwang, K.-J. & Lee, J. H. (1994). Biosci. Biotechnol. Biochem. 58, 1191-1192.], 1997[Kim, H. J., Hwang, K.-J. & Lee, J. H. (1997). Bull. Korean Chem. Soc. 18, 534-540.], 1999[Kim, H. J., Jang, J. Y., Chung, K. H. & Lee, J. H. (1999). Biosci. Biotechnol. Biochem. 63, 494-499.]); Lang & Lin (1984[Lang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1-130. Oxford: Pergamon Press.]); Sutharchanadevi & Murugan (1996[Sutharchanadevi, M. & Murugan, R. (1996). Comprehensive Heterocyclic Chemistry, Vol. 3, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 221-260. New York: Pergamon.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15ClN2O

  • Mr = 262.73

  • Monoclinic, P 21 /c

  • a = 15.0037 (9) Å

  • b = 6.2364 (4) Å

  • c = 15.5801 (9) Å

  • β = 117.238 (1)°

  • V = 1296.16 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 200 K

  • 0.35 × 0.28 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.966

  • 9224 measured reflections

  • 3211 independent reflections

  • 1907 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.07

  • 3211 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.95 2.65 3.405 (3) 136
C9—H9⋯Cg1ii 0.95 2.62 3.392 (3) 138
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isoxazole derivatives bearing various substituents are known to have diverse biological activities in pharmaceutical and agricultural areas (Lang & Lin, 1984; Boyd, 1991). Dihydropyrrolo[3,4-c]isoxazole, a fused bicyclic isoxazole, is interesting to develop a new lead compound as a plant fungicide because bicyclic isoxazoles such as dihydrofuro[3,4-c]isoxazole and dihydropyrano[3,4-c]isoxazole derivatives particularly have fungicidal activities against some plant pathogens (Kim et al., 1994, 1997, 1999). The title compound was prepared by the known method (Kim & Lee, 1994) with a minor modification.

The title compound, C14H15ClN2O, is an 8-membered 5,5-fused bicycle with two substituents (Fig. 1). The dihedral angle between the nearly planar 8-membered ring [maximum deviation of 0.033 (2) Å for C7] and the benzene ring [maximum deviation of 0.023 (2) Å for C1] is 25.0 (1)°. In the crystal structure, the molecules are stacked in columns along the b axis (Fig. 2), and display C—H···Cg1 (the centroid of ring C1–C6) interactions (Table 1).

Related literature top

For the synthesis of the title compound, see: Kim & Lee (1994). For the biological activity of isoxazoles, see: Boyd (1991); Kim et al. (1994, 1997, 1999); Lang & Lin (1984); Sutharchanadevi & Murugan (1996).

Experimental top

A mixture of 3-methyl-1-nitrobutan-2-yl acetate (1.23 g, 7 mmol), 4-chloro-N-(prop-2-ynyl)aniline (3.48 g, 21 mmol) and K2CO3 (1.16 g, 8.4 mmol) in THF (20 ml) was stirred for 12 h at 25 °C. The mixture was concentrated in vacuo and column chromatographed (SiO2) by eluting with a mixture of n-hexane/EtOAc (5:1) to afford 4-chloro-N-(3-methyl-1-nitrobutan-2-yl)-N-(prop-2-ynyl)aniline (0.49 g, 25%). The title compound was prepared by the intramolecular nitrile oxide-alkyne cycloaddition of 4-chloro-N-(3-methyl-1-nitrobutan-2-yl)-N-(prop-2-ynyl)aniline in the presence of 4-chlorophenylisocyanate and triethylamine (Kim & Lee, 1994). Crystals suitable for X-ray analysis were obtained by slow evaporation from an n-hexane/CHCl3 solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (CH, sp2), 1.00 (CH, sp3), 0.99 (CH2) or 0.98 Å (CH3), and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound.
5-(4-Chlorophenyl)-6-isopropyl-5,6-dihydro-4H- pyrrolo[3,4-c]isoxazole top
Crystal data top
C14H15ClN2OF(000) = 552
Mr = 262.73Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2659 reflections
a = 15.0037 (9) Åθ = 2.6–27.1°
b = 6.2364 (4) ŵ = 0.28 mm1
c = 15.5801 (9) ÅT = 200 K
β = 117.238 (1)°Stick, pale yellow
V = 1296.16 (14) Å30.35 × 0.28 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3211 independent reflections
Radiation source: fine-focus sealed tube1907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1920
Tmin = 0.861, Tmax = 0.966k = 88
9224 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.6269P]
where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C14H15ClN2OV = 1296.16 (14) Å3
Mr = 262.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0037 (9) ŵ = 0.28 mm1
b = 6.2364 (4) ÅT = 200 K
c = 15.5801 (9) Å0.35 × 0.28 × 0.12 mm
β = 117.238 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1907 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.966Rint = 0.043
9224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
3211 reflectionsΔρmin = 0.44 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53029 (5)0.72970 (11)0.07428 (5)0.0460 (2)
O10.17957 (13)1.1528 (3)0.45555 (12)0.0468 (5)
N10.25711 (13)0.8986 (3)0.24578 (13)0.0292 (4)
N20.17208 (15)1.2612 (3)0.37156 (14)0.0400 (5)
C10.31613 (16)0.8552 (4)0.20076 (15)0.0284 (5)
C20.32447 (17)1.0003 (4)0.13595 (16)0.0317 (5)
H20.28571.12800.11930.038*
C30.38835 (17)0.9599 (4)0.09593 (16)0.0341 (5)
H30.39401.06080.05300.041*
C40.44355 (17)0.7739 (4)0.11838 (16)0.0327 (5)
C50.43342 (16)0.6228 (4)0.17806 (16)0.0333 (5)
H50.46960.49180.19110.040*
C60.37017 (16)0.6630 (4)0.21896 (16)0.0316 (5)
H60.36340.55860.26000.038*
C70.27190 (18)0.7731 (4)0.33222 (17)0.0341 (5)
H7A0.34370.74110.37380.041*
H7B0.23350.63720.31400.041*
C80.23192 (17)0.9227 (4)0.38036 (16)0.0322 (5)
C90.21539 (18)0.9522 (4)0.45747 (17)0.0412 (6)
H90.22710.84810.50600.049*
C100.20329 (16)1.1175 (4)0.33080 (16)0.0298 (5)
C110.21313 (16)1.1144 (4)0.23924 (15)0.0279 (5)
H110.26251.22610.24260.034*
C120.11400 (17)1.1478 (4)0.14745 (16)0.0325 (5)
H120.12551.11030.09090.039*
C130.0833 (2)1.3827 (4)0.13769 (19)0.0464 (7)
H13A0.07131.42390.19220.070*
H13B0.02181.40360.07720.070*
H13C0.13691.47160.13730.070*
C140.03096 (18)1.0035 (4)0.14450 (19)0.0488 (7)
H14A0.01321.04700.19510.073*
H14B0.05420.85440.15510.073*
H14C0.02801.01610.08130.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0449 (4)0.0560 (4)0.0462 (4)0.0075 (3)0.0287 (3)0.0022 (3)
O10.0517 (11)0.0585 (12)0.0343 (10)0.0084 (9)0.0233 (9)0.0015 (9)
N10.0326 (10)0.0275 (10)0.0298 (10)0.0036 (8)0.0164 (8)0.0050 (8)
N20.0474 (12)0.0423 (12)0.0348 (11)0.0057 (10)0.0226 (10)0.0010 (10)
C10.0285 (12)0.0294 (12)0.0256 (12)0.0007 (10)0.0109 (9)0.0007 (9)
C20.0340 (13)0.0306 (12)0.0314 (13)0.0048 (10)0.0158 (10)0.0041 (10)
C30.0370 (13)0.0362 (14)0.0310 (13)0.0029 (11)0.0172 (11)0.0018 (10)
C40.0322 (12)0.0364 (13)0.0315 (13)0.0016 (11)0.0163 (10)0.0042 (10)
C50.0312 (12)0.0306 (13)0.0340 (13)0.0033 (10)0.0115 (10)0.0008 (10)
C60.0300 (12)0.0314 (12)0.0308 (12)0.0003 (10)0.0117 (10)0.0027 (10)
C70.0414 (13)0.0312 (13)0.0331 (13)0.0030 (11)0.0199 (11)0.0064 (10)
C80.0317 (12)0.0369 (13)0.0291 (12)0.0003 (11)0.0148 (10)0.0034 (10)
C90.0400 (14)0.0509 (16)0.0330 (14)0.0066 (12)0.0171 (11)0.0067 (12)
C100.0264 (11)0.0332 (13)0.0294 (12)0.0006 (10)0.0124 (10)0.0002 (10)
C110.0275 (11)0.0290 (12)0.0286 (12)0.0002 (10)0.0139 (9)0.0017 (9)
C120.0322 (13)0.0359 (13)0.0283 (12)0.0036 (10)0.0128 (10)0.0030 (10)
C130.0456 (15)0.0455 (16)0.0449 (16)0.0111 (13)0.0180 (13)0.0129 (13)
C140.0350 (14)0.0522 (17)0.0492 (16)0.0046 (13)0.0106 (12)0.0032 (13)
Geometric parameters (Å, º) top
Cl1—C41.749 (2)C7—H7A0.9900
O1—C91.356 (3)C7—H7B0.9900
O1—N21.431 (2)C8—C91.346 (3)
N1—C11.385 (3)C8—C101.398 (3)
N1—C111.482 (3)C9—H90.9500
N1—C71.484 (3)C10—C111.500 (3)
N2—C101.303 (3)C11—C121.534 (3)
C1—C61.401 (3)C11—H111.0000
C1—C21.403 (3)C12—C141.521 (3)
C2—C31.385 (3)C12—C131.522 (3)
C2—H20.9500C12—H121.0000
C3—C41.374 (3)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.380 (3)C13—H13C0.9800
C5—C61.387 (3)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—C81.485 (3)
C9—O1—N2108.68 (17)C10—C8—C7111.13 (19)
C1—N1—C11120.72 (17)C8—C9—O1109.8 (2)
C1—N1—C7119.44 (18)C8—C9—H9125.1
C11—N1—C7114.75 (16)O1—C9—H9125.1
C10—N2—O1103.03 (18)N2—C10—C8114.6 (2)
N1—C1—C6120.6 (2)N2—C10—C11133.3 (2)
N1—C1—C2121.8 (2)C8—C10—C11112.02 (19)
C6—C1—C2117.59 (19)N1—C11—C10100.43 (17)
C3—C2—C1121.0 (2)N1—C11—C12113.51 (18)
C3—C2—H2119.5C10—C11—C12114.16 (17)
C1—C2—H2119.5N1—C11—H11109.5
C4—C3—C2120.0 (2)C10—C11—H11109.5
C4—C3—H3120.0C12—C11—H11109.5
C2—C3—H3120.0C14—C12—C13111.1 (2)
C3—C4—C5120.6 (2)C14—C12—C11112.28 (19)
C3—C4—Cl1120.21 (18)C13—C12—C11110.13 (19)
C5—C4—Cl1119.21 (18)C14—C12—H12107.7
C4—C5—C6119.7 (2)C13—C12—H12107.7
C4—C5—H5120.1C11—C12—H12107.7
C6—C5—H5120.1C12—C13—H13A109.5
C5—C6—C1121.0 (2)C12—C13—H13B109.5
C5—C6—H6119.5H13A—C13—H13B109.5
C1—C6—H6119.5C12—C13—H13C109.5
N1—C7—C8101.51 (17)H13A—C13—H13C109.5
N1—C7—H7A111.5H13B—C13—H13C109.5
C8—C7—H7A111.5C12—C14—H14A109.5
N1—C7—H7B111.5C12—C14—H14B109.5
C8—C7—H7B111.5H14A—C14—H14B109.5
H7A—C7—H7B109.3C12—C14—H14C109.5
C9—C8—C10103.8 (2)H14A—C14—H14C109.5
C9—C8—C7145.0 (2)H14B—C14—H14C109.5
C9—O1—N2—C100.3 (2)C7—C8—C9—O1175.2 (3)
C11—N1—C1—C6170.09 (19)N2—O1—C9—C80.1 (3)
C7—N1—C1—C616.6 (3)O1—N2—C10—C80.5 (3)
C11—N1—C1—C29.7 (3)O1—N2—C10—C11177.8 (2)
C7—N1—C1—C2163.2 (2)C9—C8—C10—N20.6 (3)
N1—C1—C2—C3176.2 (2)C7—C8—C10—N2176.7 (2)
C6—C1—C2—C33.7 (3)C9—C8—C10—C11178.10 (19)
C1—C2—C3—C41.0 (3)C7—C8—C10—C114.6 (3)
C2—C3—C4—C52.2 (3)C1—N1—C11—C10153.36 (19)
C2—C3—C4—Cl1175.91 (18)C7—N1—C11—C101.3 (2)
C3—C4—C5—C62.7 (3)C1—N1—C11—C1284.4 (2)
Cl1—C4—C5—C6175.43 (17)C7—N1—C11—C12121.0 (2)
C4—C5—C6—C10.0 (3)N2—C10—C11—N1178.2 (2)
N1—C1—C6—C5176.7 (2)C8—C10—C11—N13.5 (2)
C2—C1—C6—C53.2 (3)N2—C10—C11—C1260.0 (3)
C1—N1—C7—C8156.14 (19)C8—C10—C11—C12118.3 (2)
C11—N1—C7—C81.2 (2)N1—C11—C12—C1465.4 (2)
N1—C7—C8—C9178.9 (3)C10—C11—C12—C1448.9 (3)
N1—C7—C8—C103.4 (2)N1—C11—C12—C13170.28 (18)
C10—C8—C9—O10.4 (3)C10—C11—C12—C1375.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.952.653.405 (3)136
C9—H9···Cg1ii0.952.623.392 (3)138
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15ClN2O
Mr262.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.0037 (9), 6.2364 (4), 15.5801 (9)
β (°) 117.238 (1)
V3)1296.16 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.35 × 0.28 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.861, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
9224, 3211, 1907
Rint0.043
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.07
No. of reflections3211
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.952.653.405 (3)136
C9—H9···Cg1ii0.952.623.392 (3)138
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This study was supported by financially Chonnam National University (2008).

References

First citationBoyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166–185.  CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, H. J., Hwang, K.-J. & Lee, J. H. (1994). Biosci. Biotechnol. Biochem. 58, 1191–1192.  CrossRef CAS Web of Science Google Scholar
First citationKim, H. J., Hwang, K.-J. & Lee, J. H. (1997). Bull. Korean Chem. Soc. 18, 534–540.  CAS Google Scholar
First citationKim, H. J., Jang, J. Y., Chung, K. H. & Lee, J. H. (1999). Biosci. Biotechnol. Biochem. 63, 494–499.  Web of Science CrossRef CAS Google Scholar
First citationKim, H. J. & Lee, J. H. (1994). Heterocycles, 38, 1383–1391.  CAS Google Scholar
First citationLang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1–130. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutharchanadevi, M. & Murugan, R. (1996). Comprehensive Heterocyclic Chemistry, Vol. 3, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 221–260. New York: Pergamon.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds