metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tetra­hydro­furan-κO)lithium(I)]-bis­­(μ-tri­methyl­silanolato-κ2O:O)-gallium(III)-bis­­(μ-tri­methyl­silanolato-κ2O:O)-[(tetra­hydro­furan-κO)lithium(I)]-μ-bromido]

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz St., 80233 - PL Gdańsk, Poland
*Correspondence e-mail: katarzyna.baranowska@pg.gda.pl

(Received 26 August 2010; accepted 3 September 2010; online 11 September 2010)

The title chain polymer compound, [GaLi2Br(C3H9OSi)4(C4H8O)2]n, was obtained in the reaction of GaBr3 with Me3SiOLi in toluene/tetra­hydro­furan. The GaIII atom, located on a twofold rotation axis, is coordinated by four trimethyl­silanolate ligands and has a distorted tetra­hedral geometry. The LiI atom is four coordinated by one bridging Br atom located on an inversion centre, two trimethyl­silanolate ligands and one tetra­hydro­furane mol­ecule in a distorted tetra­hedral geometry. The polymeric chains extend along [001]. The tetra­hydro­furane mol­ecule is disordered over two positions with site-occupancy factors of 0.57 (2) and 0.43 (2).

Related literature

For the structures of similar compounds, see: Wheatley (1963[Wheatley, P. J. (1963). J. Chem. Soc. pp. 3200-3203.]); Barry & Richeson (1994[Barry, S. T. & Richeson, D. S. (1994). Chem. Mater. 6, 2220-2221.]); Chisholm et al. (2001[Chisholm, M. H., Navarro-Llobet, D. & Gallucci, J. (2001). Inorg. Chem. 40, 6506-6508.]). For the properties of GaBr, see: Dohmeier et al. (1996[Dohmeier, C., Loos, D. & Schnöckel, H. (1996). Angew. Chem. Int. Ed. Engl. 35, 129-149.]).

[Scheme 1]

Experimental

Crystal data
  • [GaLi2Br(C3H9OSi)4(C4H8O)2]

  • Mr = 664.49

  • Monoclinic, C 2/c

  • a = 25.802 (8) Å

  • b = 9.761 (2) Å

  • c = 18.689 (6) Å

  • β = 130.81 (2)°

  • V = 3563 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 150 K

  • 0.2 × 0.18 × 0.09 mm

Data collection
  • Stoe Stadi IPDS 2 diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). IPDS and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.503, Tmax = 0.734

  • 19442 measured reflections

  • 3098 independent reflections

  • 2926 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.05

  • 3098 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: IPDS (Stoe & Cie, 2008[Stoe & Cie (2008). IPDS and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). IPDS and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complex (I) was synthesized in the course of our studies on gallium clusters. The compound was obtained in the reaction of GaBr with Me3SiOLi. GaBr is unstable in solution and easily disproportionates to the metallic gallium, gallium clusters, and GaBr3 (Dohmeier et al., 1996). The direct reaction of GaBr3 with Me3SiOLi leads to complex (I).

The polymeric structure of (I) consist of {[Li(THF)][LiBr(THF)][Ga(OSiMe3)4]} moieties with gallium atom situated in the central position. The molecular structure of the monomeric unit of (I) is shown in Fig. 1. The central gallium has a distorted tetrahedral geometry and is coordinated by four O atoms from trimethylsilanolate ligands. Each OSiMe3 ligand is a bridging one and additionally coordinates to the lithium atom. The Ga atom, two O atoms of siloxo ligands and Li atoms form a distorted planar square. Each Li atom is four coordinated by one Br atom, two O atoms from OSiMe3 ligands and one O atom from a molecule of tetrahydrofurane in a distorted tetrahedral geometry. To the best of our knowledge, only three examples of gallium complexes with OSiMe3 ligands are known (Wheatley, 1963; Barry & Richeson, 1994; Chisholm et al., 2001). [Li(THF)2[Ga(N(SiMe3)2(OSiMe3)2Cl] obtained by Barry & Richeson is very similar to complex (I). Both complexes contain distorted planar square formed by Ga1—O1—Li—O2 with comparable Ga—O distances: [1.848 (9) and 1.872 (1) Å (Barry & Richeson, 1994); 1.8207 (13) and 1.818 (14) Å (I)] and Li—O distances [1.90 (3) and 1.98 (3) Å (Barry & Richeson, 1994); 2.011 (4) and 1.972 (4) Å (I)].

Related literature top

For the structures of similar compounds, see: Wheatley (1963); Barry & Richeson (1994); Chisholm et al. (2001). For the properties of GaBr, see: Dohmeier et al. (1996).

Experimental top

Solution of GaBr (6,40 mmol) in toluene/THF (20 ml, 3:1) (Dohmeier et al., 1996) was added dropwise to solution of Me3SiOLi (0,813 g, 8,47 mmol) in THF (20 ml) at -78 °C. Afterwards, there action mixture was stirred at room temperature overnight. The solution was filtred and concentrated in vacuo to half volume. Within a few days, orange crystals of (I) were formed solution at room temperature.

Refinement top

Hydrogen atoms were placed in geometrically calculated positions (C—H 0.98 Å for methyl and 0.99 Å for methylene H atoms) and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) for methylene and 1.5Ueq(C) for methyl groups. Atoms C7—C10 of one THF are disordered over two positions with site occupancy factors of 0.57 (2) and 0.43 (2).

Computing details top

Data collection: IPDS (Stoe & Cie, 2008); cell refinement: IPDS (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. The polymeric chains formed by (I) in the crystal. H atoms have been omitted.
catena-Poly[[(tetrahydrofuran-κO)lithium(I)]- bis(µ-trimethylsilanolato-κ2O:O)-gallium(III)- bis(µ-trimethylsilanolato-κ2O:O)- [(tetrahydrofuran-κO)lithium(I)]-µ-bromido] top
Crystal data top
[GaLi2Br(C3H9OSi)4(C4H8O)2]F(000) = 1392
Mr = 664.49Dx = 1.239 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 29109 reflections
a = 25.802 (8) Åθ = 1.4–25.0°
b = 9.761 (2) ŵ = 2.06 mm1
c = 18.689 (6) ÅT = 150 K
β = 130.81 (2)°Prism, colourless
V = 3563 (2) Å30.2 × 0.18 × 0.09 mm
Z = 4
Data collection top
Stoe Stadi IPDS 2
diffractometer
3098 independent reflections
Radiation source: fine-focus sealed tube2926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scanh = 3030
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2008)
k = 1111
Tmin = 0.503, Tmax = 0.734l = 2222
19442 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0478P)2 + 2.5155P]
where P = (Fo2 + 2Fc2)/3
3098 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[GaLi2Br(C3H9OSi)4(C4H8O)2]V = 3563 (2) Å3
Mr = 664.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.802 (8) ŵ = 2.06 mm1
b = 9.761 (2) ÅT = 150 K
c = 18.689 (6) Å0.2 × 0.18 × 0.09 mm
β = 130.81 (2)°
Data collection top
Stoe Stadi IPDS 2
diffractometer
3098 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2008)
2926 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.734Rint = 0.080
19442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
3098 reflectionsΔρmin = 0.60 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10000.1153 (3)
Ga100.08220 (2)0.250.02639 (11)
Si10.11720 (3)0.13978 (6)0.32580 (5)0.04353 (16)
Si20.08944 (3)0.28619 (7)0.07510 (4)0.04904 (18)
O10.06525 (7)0.01375 (13)0.26059 (9)0.0343 (3)
O20.02655 (7)0.18106 (14)0.14841 (9)0.0366 (3)
O30.12462 (10)0.19275 (18)0.19590 (15)0.0616 (5)
C10.11245 (16)0.2675 (3)0.2482 (3)0.0730 (8)
H1A0.1240.22330.21310.109*
H1B0.06590.30490.20360.109*
H1C0.14490.34190.28690.109*
C20.20664 (14)0.0753 (4)0.4125 (2)0.0775 (9)
H2A0.21160.01860.45990.116*
H2B0.21710.02030.37950.116*
H2C0.23830.1530.44370.116*
C30.09372 (16)0.2196 (3)0.3913 (2)0.0759 (9)
H3A0.04890.26390.34650.114*
H3B0.09170.1490.42670.114*
H3C0.12820.28830.43540.114*
C50.15978 (19)0.1939 (5)0.0340 (2)0.1035 (14)
H5A0.17460.11670.01770.155*
H5B0.14360.15980.06570.155*
H5C0.19840.25650.07630.155*
C40.0577 (2)0.4234 (4)0.0441 (3)0.0990 (13)
H4A0.04660.38460.00720.149*
H4B0.01650.46480.10210.149*
H4C0.09320.49370.00660.149*
C60.12074 (18)0.3621 (3)0.1317 (2)0.0776 (9)
H6A0.08330.41190.18870.116*
H6B0.1370.2890.14870.116*
H6C0.15840.42540.08740.116*
Li10.0429 (2)0.0908 (4)0.1507 (3)0.0437 (8)
C70.1816 (6)0.1116 (11)0.2192 (8)0.064 (2)0.57 (2)
H7A0.21950.1080.28850.077*0.57 (2)
H7B0.16650.01690.19510.077*0.57 (2)
C80.2033 (6)0.1793 (15)0.1742 (11)0.092 (4)0.57 (2)
H8A0.25290.16550.21060.11*0.57 (2)
H8B0.17760.14480.10910.11*0.57 (2)
C90.1886 (8)0.3183 (16)0.1736 (15)0.102 (5)0.57 (2)
H9A0.17990.36720.12030.123*0.57 (2)
H9B0.22710.36350.23350.123*0.57 (2)
C100.1277 (9)0.3169 (18)0.1630 (13)0.102 (5)0.57 (2)
H10A0.12950.39310.19950.123*0.57 (2)
H10B0.08640.32890.09560.123*0.57 (2)
C7A0.1685 (12)0.126 (2)0.187 (2)0.125 (8)0.43 (2)
H7C0.14210.07470.12680.15*0.43 (2)
H7D0.19920.06110.24030.15*0.43 (2)
C8A0.2101 (9)0.247 (4)0.1900 (10)0.146 (15)0.43 (2)
H8C0.25960.23740.24540.175*0.43 (2)
H8D0.2040.24730.13190.175*0.43 (2)
C9A0.1826 (8)0.375 (2)0.1970 (14)0.110 (8)0.43 (2)
H9C0.18130.44930.16020.132*0.43 (2)
H9D0.21060.40410.26370.132*0.43 (2)
C10A0.1110 (9)0.336 (2)0.1559 (9)0.076 (4)0.43 (2)
H10C0.09370.39710.17850.091*0.43 (2)
H10D0.07840.33550.0860.091*0.43 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1081 (4)0.1890 (7)0.0632 (3)0.0066 (4)0.0623 (3)0.0435 (4)
Ga10.02674 (16)0.02626 (16)0.02663 (16)00.01764 (13)0
Si10.0344 (3)0.0407 (3)0.0561 (4)0.0103 (2)0.0299 (3)0.0130 (3)
Si20.0548 (4)0.0490 (3)0.0400 (3)0.0205 (3)0.0295 (3)0.0161 (3)
O10.0327 (7)0.0349 (6)0.0390 (7)0.0039 (5)0.0251 (6)0.0045 (5)
O20.0420 (7)0.0371 (7)0.0338 (7)0.0091 (6)0.0261 (6)0.0076 (5)
O30.0746 (12)0.0558 (9)0.0834 (13)0.0096 (9)0.0644 (11)0.0009 (9)
C10.0711 (18)0.0480 (13)0.115 (2)0.0111 (13)0.0675 (19)0.0024 (15)
C20.0367 (13)0.092 (2)0.075 (2)0.0094 (13)0.0240 (14)0.0147 (16)
C30.0673 (17)0.0797 (19)0.091 (2)0.0280 (15)0.0563 (18)0.0480 (17)
C50.072 (2)0.118 (3)0.0516 (17)0.026 (2)0.0097 (16)0.0016 (18)
C40.137 (4)0.076 (2)0.121 (3)0.044 (2)0.101 (3)0.057 (2)
C60.082 (2)0.082 (2)0.0751 (19)0.0426 (17)0.0540 (18)0.0226 (16)
Li10.051 (2)0.0485 (19)0.0458 (19)0.0031 (15)0.0378 (18)0.0035 (15)
C70.046 (3)0.068 (4)0.076 (4)0.003 (3)0.038 (3)0.002 (3)
C80.056 (5)0.108 (8)0.126 (9)0.001 (5)0.066 (6)0.017 (6)
C90.088 (8)0.102 (11)0.123 (12)0.003 (7)0.072 (9)0.038 (8)
C100.112 (10)0.063 (5)0.182 (13)0.018 (6)0.118 (11)0.042 (6)
C7A0.084 (12)0.167 (14)0.17 (2)0.014 (10)0.103 (14)0.016 (13)
C8A0.077 (10)0.31 (4)0.058 (6)0.118 (19)0.047 (6)0.039 (14)
C9A0.063 (8)0.116 (13)0.079 (8)0.044 (8)0.015 (6)0.038 (8)
C10A0.059 (7)0.079 (10)0.060 (6)0.020 (6)0.027 (5)0.019 (5)
Geometric parameters (Å, º) top
Br1—Li12.422 (4)C5—H5A0.98
Br1—Li1i2.422 (4)C5—H5B0.98
Ga1—O2ii1.8180 (14)C5—H5C0.98
Ga1—O21.8180 (14)C4—H4A0.98
Ga1—O1ii1.8207 (13)C4—H4B0.98
Ga1—O11.8207 (13)C4—H4C0.98
Ga1—Li1ii2.713 (3)C6—H6A0.98
Ga1—Li12.713 (3)C6—H6B0.98
Si1—O11.6310 (14)C6—H6C0.98
Si1—C11.855 (3)C7—C81.441 (18)
Si1—C31.855 (3)C7—H7A0.99
Si1—C21.860 (3)C7—H7B0.99
Si2—O21.6301 (14)C8—C91.41 (2)
Si2—C41.850 (3)C8—H8A0.99
Si2—C51.851 (4)C8—H8B0.99
Si2—C61.853 (3)C9—C101.45 (2)
O1—Li12.011 (4)C9—H9A0.99
O2—Li11.972 (4)C9—H9B0.99
O3—C101.385 (17)C10—H10A0.99
O3—C7A1.41 (2)C10—H10B0.99
O3—C71.463 (14)C7A—C8A1.58 (3)
O3—C10A1.513 (19)C7A—H7C0.99
O3—Li11.955 (4)C7A—H7D0.99
C1—H1A0.98C8A—C9A1.48 (3)
C1—H1B0.98C8A—H8C0.99
C1—H1C0.98C8A—H8D0.99
C2—H2A0.98C9A—C10A1.51 (2)
C2—H2B0.98C9A—H9C0.99
C2—H2C0.98C9A—H9D0.99
C3—H3A0.98C10A—H10C0.99
C3—H3B0.98C10A—H10D0.99
C3—H3C0.98
Li1—Br1—Li1i180.00 (12)H4A—C4—H4B109.5
O2ii—Ga1—O2115.88 (9)Si2—C4—H4C109.5
O2ii—Ga1—O1ii94.42 (6)H4A—C4—H4C109.5
O2—Ga1—O1ii117.97 (7)H4B—C4—H4C109.5
O2ii—Ga1—O1117.97 (7)Si2—C6—H6A109.5
O2—Ga1—O194.42 (6)Si2—C6—H6B109.5
O1ii—Ga1—O1118.09 (8)H6A—C6—H6B109.5
O2ii—Ga1—Li1ii46.60 (9)Si2—C6—H6C109.5
O2—Ga1—Li1ii130.87 (9)H6A—C6—H6C109.5
O1ii—Ga1—Li1ii47.83 (9)H6B—C6—H6C109.5
O1—Ga1—Li1ii134.67 (9)O3—Li1—O2119.32 (19)
O2ii—Ga1—Li1130.87 (9)O3—Li1—O1108.0 (2)
O2—Ga1—Li146.60 (9)O2—Li1—O184.19 (14)
O1ii—Ga1—Li1134.67 (9)O3—Li1—Br1103.47 (15)
O1—Ga1—Li147.83 (9)O2—Li1—Br1114.85 (18)
Li1ii—Ga1—Li1176.47 (15)O1—Li1—Br1127.60 (17)
O1—Si1—C1108.71 (12)O3—Li1—Ga1121.79 (17)
O1—Si1—C3110.29 (10)O2—Li1—Ga142.05 (7)
C1—Si1—C3110.49 (15)O1—Li1—Ga142.14 (7)
O1—Si1—C2109.97 (12)Br1—Li1—Ga1134.71 (16)
C1—Si1—C2108.59 (15)C8—C7—O3106.1 (8)
C3—Si1—C2108.77 (16)C8—C7—H7A110.5
O2—Si2—C4108.53 (14)O3—C7—H7A110.5
O2—Si2—C5109.90 (14)C8—C7—H7B110.5
C4—Si2—C5108.9 (2)O3—C7—H7B110.5
O2—Si2—C6109.74 (11)H7A—C7—H7B108.7
C4—Si2—C6109.66 (17)C9—C8—C7104.0 (12)
C5—Si2—C6110.09 (18)C9—C8—H8A111
Si1—O1—Ga1135.98 (8)C7—C8—H8A111
Si1—O1—Li1133.87 (13)C9—C8—H8B111
Ga1—O1—Li190.02 (11)C7—C8—H8B111
Si2—O2—Ga1134.48 (8)H8A—C8—H8B109
Si2—O2—Li1133.68 (12)C8—C9—C10104.8 (12)
Ga1—O2—Li191.34 (11)C8—C9—H9A110.8
C10—O3—C7A94.2 (11)C10—C9—H9A110.8
C10—O3—C7105.5 (8)C8—C9—H9B110.8
C7A—O3—C10A108.6 (12)C10—C9—H9B110.8
C7—O3—C10A120.7 (10)H9A—C9—H9B108.9
C10—O3—Li1127.8 (7)O3—C10—C9108.6 (12)
C7A—O3—Li1115.8 (9)O3—C10—H10A110
C7—O3—Li1116.3 (4)C9—C10—H10A110
C10A—O3—Li1114.8 (7)O3—C10—H10B110
Si1—C1—H1A109.5C9—C10—H10B110
Si1—C1—H1B109.5H10A—C10—H10B108.3
H1A—C1—H1B109.5O3—C7A—C8A103.3 (18)
Si1—C1—H1C109.5O3—C7A—H7C111.1
H1A—C1—H1C109.5C8A—C7A—H7C111.1
H1B—C1—H1C109.5O3—C7A—H7D111.1
Si1—C2—H2A109.5C8A—C7A—H7D111.1
Si1—C2—H2B109.5H7C—C7A—H7D109.1
H2A—C2—H2B109.5C9A—C8A—C7A106.1 (14)
Si1—C2—H2C109.5C9A—C8A—H8C110.5
H2A—C2—H2C109.5C7A—C8A—H8C110.5
H2B—C2—H2C109.5C9A—C8A—H8D110.5
Si1—C3—H3A109.5C7A—C8A—H8D110.5
Si1—C3—H3B109.5H8C—C8A—H8D108.7
H3A—C3—H3B109.5C8A—C9A—C10A104.0 (13)
Si1—C3—H3C109.5C8A—C9A—H9C111
H3A—C3—H3C109.5C10A—C9A—H9C111
H3B—C3—H3C109.5C8A—C9A—H9D111
Si2—C5—H5A109.5C10A—C9A—H9D111
Si2—C5—H5B109.5H9C—C9A—H9D109
H5A—C5—H5B109.5O3—C10A—C9A99.6 (12)
Si2—C5—H5C109.5O3—C10A—H10C111.9
H5A—C5—H5C109.5C9A—C10A—H10C111.9
H5B—C5—H5C109.5O3—C10A—H10D111.9
Si2—C4—H4A109.5C9A—C10A—H10D111.9
Si2—C4—H4B109.5H10C—C10A—H10D109.6
C1—Si1—O1—Ga1132.69 (14)Si2—O2—Li1—O1171.36 (12)
C3—Si1—O1—Ga111.41 (19)Ga1—O2—Li1—O11.13 (11)
C2—Si1—O1—Ga1108.54 (17)Si2—O2—Li1—Br142.4 (3)
C1—Si1—O1—Li141.9 (2)Ga1—O2—Li1—Br1130.09 (14)
C3—Si1—O1—Li1163.2 (2)Si2—O2—Li1—Ga1172.49 (19)
C2—Si1—O1—Li176.8 (2)Si1—O1—Li1—O365.9 (2)
O2ii—Ga1—O1—Si162.64 (14)Ga1—O1—Li1—O3117.85 (16)
O2—Ga1—O1—Si1174.90 (12)Si1—O1—Li1—O2175.13 (12)
O1ii—Ga1—O1—Si149.84 (10)Ga1—O1—Li1—O21.13 (11)
Li1ii—Ga1—O1—Si17.31 (19)Si1—O1—Li1—Br158.1 (3)
Li1—Ga1—O1—Si1176.12 (19)Ga1—O1—Li1—Br1118.2 (2)
O2ii—Ga1—O1—Li1121.24 (13)Si1—O1—Li1—Ga1176.26 (18)
O2—Ga1—O1—Li11.22 (12)O2ii—Ga1—Li1—O311.3 (3)
O1ii—Ga1—O1—Li1126.28 (12)O2—Ga1—Li1—O3100.0 (2)
Li1ii—Ga1—O1—Li1176.57 (15)O1ii—Ga1—Li1—O3171.58 (13)
C4—Si2—O2—Ga1143.96 (18)O1—Ga1—Li1—O381.7 (2)
C5—Si2—O2—Ga197.1 (2)O2ii—Ga1—Li1—O288.64 (16)
C6—Si2—O2—Ga124.14 (19)O1ii—Ga1—Li1—O288.45 (14)
C4—Si2—O2—Li146.6 (2)O1—Ga1—Li1—O2178.32 (17)
C5—Si2—O2—Li172.4 (2)O2ii—Ga1—Li1—O193.04 (13)
C6—Si2—O2—Li1166.4 (2)O2—Ga1—Li1—O1178.32 (17)
O2ii—Ga1—O2—Si264.78 (11)O1ii—Ga1—Li1—O189.87 (16)
O1ii—Ga1—O2—Si245.99 (14)O2ii—Ga1—Li1—Br1166.26 (14)
O1—Ga1—O2—Si2171.14 (12)O2—Ga1—Li1—Br177.6 (2)
Li1ii—Ga1—O2—Si210.94 (19)O1ii—Ga1—Li1—Br110.8 (3)
Li1—Ga1—O2—Si2172.39 (19)O1—Ga1—Li1—Br1100.7 (2)
O2ii—Ga1—O2—Li1122.83 (13)C10—O3—C7—C815.5 (15)
O1ii—Ga1—O2—Li1126.40 (13)C7A—O3—C7—C839 (3)
O1—Ga1—O2—Li11.25 (13)C10A—O3—C7—C814.6 (13)
Li1ii—Ga1—O2—Li1176.67 (14)Li1—O3—C7—C8132.3 (9)
C10—O3—Li1—O256.0 (10)O3—C7—C8—C930.4 (14)
C7A—O3—Li1—O2174.4 (14)C7—C8—C9—C1033.0 (18)
C7—O3—Li1—O2164.5 (6)C7A—O3—C10—C920 (2)
C10A—O3—Li1—O246.6 (9)C7—O3—C10—C95.1 (18)
C10—O3—Li1—O1149.4 (10)C10A—O3—C10—C9178 (6)
C7A—O3—Li1—O192.1 (15)Li1—O3—C10—C9147.9 (12)
C7—O3—Li1—O171.0 (6)C8—C9—C10—O324 (2)
C10A—O3—Li1—O1140.1 (8)C10—O3—C7A—C8A22.8 (19)
C10—O3—Li1—Br173.1 (10)C7—O3—C7A—C8A105 (4)
C7A—O3—Li1—Br145.4 (15)C10A—O3—C7A—C8A28 (2)
C7—O3—Li1—Br166.4 (6)Li1—O3—C7A—C8A158.7 (10)
C10A—O3—Li1—Br182.5 (8)O3—C7A—C8A—C9A2 (2)
C10—O3—Li1—Ga1105.1 (10)C7A—C8A—C9A—C10A24.0 (16)
C7A—O3—Li1—Ga1136.4 (14)C10—O3—C10A—C9A23 (4)
C7—O3—Li1—Ga1115.3 (6)C7A—O3—C10A—C9A42.8 (19)
C10A—O3—Li1—Ga195.8 (8)C7—O3—C10A—C9A26.8 (14)
Si2—O2—Li1—O381.3 (3)Li1—O3—C10A—C9A174.2 (11)
Ga1—O2—Li1—O3106.2 (2)C8A—C9A—C10A—O339.0 (15)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[GaLi2Br(C3H9OSi)4(C4H8O)2]
Mr664.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)25.802 (8), 9.761 (2), 18.689 (6)
β (°) 130.81 (2)
V3)3563 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.2 × 0.18 × 0.09
Data collection
DiffractometerStoe Stadi IPDS 2
diffractometer
Absorption correctionNumerical
(X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.503, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
19442, 3098, 2926
Rint0.080
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05
No. of reflections3098
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.60

Computer programs: IPDS (Stoe & Cie, 2008), X-RED32 (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBarry, S. T. & Richeson, D. S. (1994). Chem. Mater. 6, 2220–2221.  CSD CrossRef CAS Web of Science
First citationChisholm, M. H., Navarro-Llobet, D. & Gallucci, J. (2001). Inorg. Chem. 40, 6506–6508.  Web of Science CSD CrossRef PubMed CAS
First citationDohmeier, C., Loos, D. & Schnöckel, H. (1996). Angew. Chem. Int. Ed. Engl. 35, 129–149.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (2008). IPDS and X-RED32. Stoe & Cie, Darmstadt, Germany.
First citationWheatley, P. J. (1963). J. Chem. Soc. pp. 3200–3203.  CrossRef Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds