metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-2′,6′-Di­carb­oxy­bi­phenyl-2,6-dicar­boxylato)bis­[(1,10-phenanthroline)silver(I)]

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 16 July 2010; accepted 21 September 2010; online 30 September 2010)

In the dimeric title complex, [Ag2(C16H8O8)(C12H8N2)2] or [Ag2(H2bta)(phen)2] (H4bta = biphenyl-2,2′,6,6′-tetra­carb­ox­y­lic acid, phen = 1,10-phenanthroline), each Ag(I) ion displays an approximatively planar-trigonal geometry, being surrounded by one chelating phen ligand and one carboxyl­ate O atom from an H2bta ligand. Owing to the the presence of crystallographic twofold rotation axes, the four C atoms bisecting the H~2~bta ligand are located on a special position. Each H2bta ligand acts as a bis-monodentate ligand, ligating two Ag(I) ions into a dimeric compound. Inter­molecular O—H⋯O inter­actions are observed in the crystal structure.

Related literature

The self-assembled construction of coordination polymers is of current inter­est in the field of supra­molecular chemistry and crystal engineering owing to their potential applications as functional materials, as well as their intriguing variety of architectures and mol­ecular topologies, see: Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev., 98, 1375-1405.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For related structures, see: Huang et al. (2007[Huang, Y. G., Gong, Y. Q., Jiang, F. L., Huang, Y. G., Gong, Y. Q., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2007). Cryst. Growth Des. 7, 1385-1387.]); Suh et al. (2006[Suh, M. P., Moon, H. R., Lee, E. Y. & Jang, S. Y. (2006). J. Am. Chem. Soc. 128, 4710-4718.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C16H8O8)(C12H8N2)2]

  • Mr = 904.37

  • Monoclinic, C 2/c

  • a = 11.7633 (17) Å

  • b = 11.5730 (18) Å

  • c = 24.884 (4) Å

  • β = 92.397 (2)°

  • V = 3384.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.792, Tmax = 0.838

  • 8881 measured reflections

  • 3300 independent reflections

  • 1843 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.178

  • S = 1.04

  • 3300 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—O1 2.141 (4)
Ag1—N2 2.220 (5)
Ag1—N1 2.350 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.85 1.71 2.564 (7) 179
Symmetry code: (i) [-x+2, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The self-assembled construction of coordination polymers is of current interest in the field of supramolecular chemistry and crystal engineering owing to their potential applications as functional materials, as well as their intriguing variety of architectures and molecular topologies (Braga et al. 1998; Yaghi et al. 1998). Polycarboxylate ligands,such as 1,2-benzenedicarboxylate, 1,3,5-benzenetricarboxylate and 1,2,4,5-benzenetetracarboxylate, have been extensively employed in the preparation of such coordination polymers in possession of multidimensional networks and interesting properties. However, the biphenyl-2,2',6,6'-tetracarboxylic acid (H4bta) ligand, as a member of multidentate O-donor ligands, is rarely used (Huang et al. 2007; Suh et al. 2006). Herein, we synthesis a new dimeric complex, Ag2(H2bta)(phen)2 (H4bta = biphenyl-2,2',6,6'-tetracarboxylic acid, phen = 1,10-phenanthroline) with H4bta ligand.

The asymmetric unit of the title compound, contains a Ag(I) cation, half of a H2bta ligand and a chelating phen. In the compound, each Ag(I) ion displays a approximatively planar trigonal geometry, being surrounde by one chelating phen ligand and one carboxylate oxygen atom, coming from a H2bta ligand. Each H2bta acts as a bis-monodentate ligand to ligate two Ag(I) ions into a dimeric compound. Interestingly, only the two carboxylates in one benzene ring of each H2bta ligand are deprotoned and coordinated to Ag(I) ions, while the other two carboxylates in the other benzene ring are undeprotoned and free. The Ag···Ag distance in the dimer is 10.61 (1) Å. It is noted that the angle of two benzene rings in a H2bta ligand is 70.52 (4)°.

Related literature top

The self-assembled construction of coordination polymers is of current interest in the field of supramolecular chemistry and crystal engineering owing to their potential applications as functional materials, as well as their intriguing variety of architectures and molecular topologies, see: Braga et al. (1998); Yaghi et al. (1998). For related structures, see: Huang et al. (2007); Suh et al. (2006).

Experimental top

A mixture of H4bta (0.066 g, 0.2 mmol), AgNO3 (0.068 g, 0.4 mmol), phen (0.072 g, 0.4 mmol) and H2O (10 ml) were heated in a 25-ml Teflon-lined vessel at 180 ° for 3 days, followed by slow cooling (5 ° h-1) to room temperature. After filtration and washing with H2O, colourless block crystals were collected and dried in air (0.054 g, yield ca 15% based on H4bta).

Refinement top

The H atoms of carboxylates were located in a difference map and was refined with the restraint of O—H = 0.85 Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.2 Uiso(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound with 30% thermal ellipsoids. Symmetry code: A: 2 - x, y, 3/2 - z.
(µ-2',6'-Dicarboxybiphenyl-2,6-dicarboxylato)bis[(1,10- phenanthroline)silver(I)] top
Crystal data top
[Ag2(C16H8O8)(C12H8N2)2]F(000) = 1800
Mr = 904.37Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 785 reflections
a = 11.7633 (17) Åθ = 2.4–28.0°
b = 11.5730 (18) ŵ = 1.22 mm1
c = 24.884 (4) ÅT = 293 K
β = 92.397 (2)°Block, colourless
V = 3384.7 (9) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3300 independent reflections
Radiation source: fine-focus sealed tube1843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scanθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1411
Tmin = 0.792, Tmax = 0.838k = 1413
8881 measured reflectionsl = 3024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0855P)2 + 3.1208P]
where P = (Fo2 + 2Fc2)/3
3300 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 1.59 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Ag2(C16H8O8)(C12H8N2)2]V = 3384.7 (9) Å3
Mr = 904.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.7633 (17) ŵ = 1.22 mm1
b = 11.5730 (18) ÅT = 293 K
c = 24.884 (4) Å0.20 × 0.18 × 0.15 mm
β = 92.397 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3300 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1843 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.838Rint = 0.041
8881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.04Δρmax = 1.59 e Å3
3300 reflectionsΔρmin = 0.97 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.81077 (5)0.01234 (5)0.55273 (2)0.0794 (3)
C11.00000.2818 (8)0.75000.070 (3)
H1A1.00000.36220.75000.085*
C20.9466 (6)0.2224 (5)0.7086 (3)0.0664 (18)
H2A0.91080.26270.68030.080*
C30.9455 (5)0.1024 (5)0.7085 (2)0.0484 (13)
C41.00000.0408 (7)0.75000.0429 (17)
C51.00000.0907 (7)0.75000.0461 (18)
C61.0860 (4)0.1536 (5)0.7259 (2)0.0473 (13)
C71.0835 (5)0.2719 (6)0.7253 (3)0.0659 (17)
H7A1.13950.31220.70770.079*
C81.00000.3321 (8)0.75000.083 (3)
H8A1.00000.41250.75000.099*
C90.8803 (6)0.0437 (5)0.6624 (3)0.0556 (15)
C101.1845 (5)0.0952 (6)0.6995 (3)0.0559 (16)
C110.5481 (9)0.0452 (9)0.5938 (4)0.108 (3)
H11A0.57170.00030.62290.130*
C120.4429 (11)0.0925 (13)0.5920 (6)0.145 (6)
H12A0.39430.07620.61960.173*
C130.4064 (9)0.1619 (13)0.5520 (7)0.148 (7)
H13A0.33450.19530.55240.178*
C140.4794 (7)0.1846 (9)0.5079 (5)0.107 (3)
C150.4506 (9)0.2534 (11)0.4630 (8)0.153 (7)
H15A0.38050.29070.46150.183*
C160.5196 (12)0.2673 (8)0.4225 (5)0.132 (5)
H16A0.49640.31370.39360.158*
C170.6320 (8)0.2111 (6)0.4224 (4)0.085 (2)
C180.7075 (11)0.2189 (8)0.3815 (4)0.111 (3)
H18A0.68910.26180.35070.133*
C190.8068 (10)0.1640 (8)0.3867 (3)0.099 (3)
H19A0.85720.16690.35900.118*
C200.8361 (6)0.1025 (6)0.4333 (3)0.0734 (19)
H20A0.90710.06710.43630.088*
C210.6640 (5)0.1444 (5)0.4685 (3)0.0574 (15)
C220.5854 (5)0.1301 (6)0.5117 (3)0.071 (2)
N10.6176 (5)0.0637 (6)0.5541 (2)0.0738 (16)
N20.7670 (4)0.0925 (4)0.47350 (19)0.0550 (12)
O10.9113 (4)0.0678 (4)0.61601 (18)0.0740 (13)
O20.8007 (4)0.0204 (4)0.67257 (19)0.0720 (13)
O31.2028 (4)0.1158 (4)0.65313 (19)0.0761 (13)
O41.2503 (4)0.0277 (4)0.7283 (2)0.0683 (12)
H4A1.23400.02530.76120.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0838 (5)0.0943 (5)0.0584 (4)0.0106 (3)0.0170 (3)0.0002 (3)
C10.095 (7)0.047 (5)0.070 (7)0.0000.005 (6)0.000
C20.085 (5)0.057 (4)0.057 (4)0.012 (3)0.001 (4)0.007 (3)
C30.051 (3)0.046 (3)0.048 (3)0.002 (2)0.001 (3)0.005 (3)
C40.037 (4)0.049 (5)0.043 (4)0.0000.005 (3)0.000
C50.045 (4)0.050 (5)0.043 (4)0.0000.000 (4)0.000
C60.043 (3)0.052 (4)0.047 (3)0.006 (3)0.005 (2)0.001 (3)
C70.066 (4)0.058 (4)0.075 (5)0.009 (3)0.022 (3)0.007 (3)
C80.103 (8)0.045 (5)0.103 (8)0.0000.029 (7)0.000
C90.053 (4)0.060 (4)0.053 (4)0.007 (3)0.007 (3)0.004 (3)
C100.039 (3)0.068 (4)0.061 (4)0.007 (3)0.010 (3)0.004 (3)
C110.091 (7)0.133 (7)0.105 (7)0.049 (6)0.042 (6)0.058 (6)
C120.091 (10)0.180 (15)0.167 (13)0.055 (9)0.050 (8)0.122 (11)
C130.045 (6)0.167 (13)0.233 (17)0.008 (6)0.023 (9)0.141 (12)
C140.064 (6)0.107 (7)0.149 (9)0.019 (5)0.018 (6)0.076 (7)
C150.069 (7)0.115 (9)0.27 (2)0.030 (6)0.071 (9)0.063 (12)
C160.144 (11)0.074 (6)0.169 (12)0.022 (7)0.092 (9)0.002 (7)
C170.112 (6)0.054 (4)0.084 (6)0.001 (4)0.039 (5)0.012 (4)
C180.200 (12)0.072 (6)0.057 (5)0.018 (6)0.022 (7)0.007 (4)
C190.152 (9)0.084 (6)0.062 (6)0.029 (6)0.019 (6)0.005 (5)
C200.073 (5)0.086 (5)0.061 (5)0.011 (4)0.007 (4)0.015 (4)
C210.059 (4)0.053 (4)0.059 (4)0.003 (3)0.016 (3)0.012 (3)
C220.044 (4)0.077 (5)0.091 (6)0.001 (3)0.007 (4)0.043 (4)
N10.061 (4)0.098 (5)0.063 (4)0.014 (3)0.015 (3)0.027 (3)
N20.057 (3)0.062 (3)0.046 (3)0.002 (2)0.001 (2)0.011 (2)
O10.075 (3)0.098 (4)0.048 (3)0.009 (3)0.004 (2)0.001 (2)
O20.065 (3)0.088 (3)0.062 (3)0.021 (2)0.009 (2)0.003 (2)
O30.067 (3)0.102 (4)0.061 (3)0.003 (2)0.024 (2)0.005 (3)
O40.049 (2)0.085 (3)0.071 (3)0.011 (2)0.013 (2)0.006 (2)
Geometric parameters (Å, º) top
Ag1—O12.141 (4)C11—C121.352 (15)
Ag1—N22.220 (5)C11—H11A0.9300
Ag1—N12.350 (6)C12—C131.337 (18)
C1—C21.369 (8)C12—H12A0.9300
C1—C2i1.369 (8)C13—C141.445 (17)
C1—H1A0.9300C13—H13A0.9300
C2—C31.389 (8)C14—C221.397 (11)
C2—H2A0.9300C14—C151.401 (18)
C3—C41.390 (7)C15—C161.329 (17)
C3—C91.514 (8)C15—H15A0.9300
C4—C3i1.390 (7)C16—C171.474 (14)
C4—C51.521 (11)C16—H16A0.9300
C5—C6i1.402 (6)C17—C181.383 (12)
C5—C61.402 (6)C17—C211.419 (10)
C6—C71.370 (8)C18—C191.332 (13)
C6—C101.515 (8)C18—H18A0.9300
C7—C81.371 (8)C19—C201.391 (11)
C7—H7A0.9300C19—H19A0.9300
C8—C7i1.371 (8)C20—N21.320 (8)
C8—H8A0.9300C20—H20A0.9300
C9—O21.230 (8)C21—N21.353 (7)
C9—O11.255 (7)C21—C221.457 (10)
C10—O31.207 (7)C22—N11.346 (9)
C10—O41.295 (7)O4—H4A0.8492
C11—N11.326 (9)
O1—Ag1—N2159.20 (18)C12—C13—C14119.6 (12)
O1—Ag1—N1127.1 (2)C12—C13—H13A120.2
N2—Ag1—N173.7 (2)C14—C13—H13A120.2
C2—C1—C2i119.7 (9)C22—C14—C15119.8 (11)
C2—C1—H1A120.1C22—C14—C13115.0 (12)
C2i—C1—H1A120.1C15—C14—C13125.2 (11)
C1—C2—C3120.5 (6)C16—C15—C14122.5 (11)
C1—C2—H2A119.8C16—C15—H15A118.7
C3—C2—H2A119.8C14—C15—H15A118.7
C2—C3—C4120.5 (6)C15—C16—C17121.6 (11)
C2—C3—C9117.0 (5)C15—C16—H16A119.2
C4—C3—C9122.5 (5)C17—C16—H16A119.2
C3—C4—C3i118.3 (7)C18—C17—C21118.3 (8)
C3—C4—C5120.9 (4)C18—C17—C16125.2 (10)
C3i—C4—C5120.9 (4)C21—C17—C16116.5 (9)
C6i—C5—C6117.4 (7)C19—C18—C17119.0 (8)
C6i—C5—C4121.3 (3)C19—C18—H18A120.5
C6—C5—C4121.3 (3)C17—C18—H18A120.5
C7—C6—C5120.6 (5)C18—C19—C20120.8 (8)
C7—C6—C10117.2 (5)C18—C19—H19A119.6
C5—C6—C10122.2 (5)C20—C19—H19A119.6
C6—C7—C8121.2 (6)N2—C20—C19122.5 (8)
C6—C7—H7A119.4N2—C20—H20A118.7
C8—C7—H7A119.4C19—C20—H20A118.7
C7i—C8—C7118.9 (9)N2—C21—C17121.5 (7)
C7i—C8—H8A120.5N2—C21—C22118.4 (6)
C7—C8—H8A120.5C17—C21—C22120.2 (7)
O2—C9—O1125.2 (6)N1—C22—C14122.2 (9)
O2—C9—C3118.7 (6)N1—C22—C21118.4 (6)
O1—C9—C3116.1 (6)C14—C22—C21119.4 (9)
O3—C10—O4121.5 (5)C11—N1—C22120.8 (8)
O3—C10—C6119.8 (6)C11—N1—Ag1126.7 (7)
O4—C10—C6118.6 (6)C22—N1—Ag1112.0 (4)
N1—C11—C12120.2 (12)C20—N2—C21117.9 (6)
N1—C11—H11A119.9C20—N2—Ag1125.6 (5)
C12—C11—H11A119.9C21—N2—Ag1116.2 (4)
C13—C12—C11122.1 (13)C9—O1—Ag1114.0 (4)
C13—C12—H12A118.9C10—O4—H4A113.5
C11—C12—H12A118.9
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.851.712.564 (7)179
Symmetry code: (i) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag2(C16H8O8)(C12H8N2)2]
Mr904.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.7633 (17), 11.5730 (18), 24.884 (4)
β (°) 92.397 (2)
V3)3384.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.792, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
8881, 3300, 1843
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.178, 1.04
No. of reflections3300
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.59, 0.97

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—O12.141 (4)Ag1—N12.350 (6)
Ag1—N22.220 (5)C3—C91.514 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.851.712.564 (7)179.4
Symmetry code: (i) x+2, y, z+3/2.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev., 98, 1375-1405.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, Y. G., Gong, Y. Q., Jiang, F. L., Huang, Y. G., Gong, Y. Q., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2007). Cryst. Growth Des. 7, 1385–1387.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, M. P., Moon, H. R., Lee, E. Y. & Jang, S. Y. (2006). J. Am. Chem. Soc. 128, 4710–4718.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds