organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2572-o2573

3-Benzoyl-1,1-di­benzyl­thio­urea

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 August 2010; accepted 8 September 2010; online 18 September 2010)

Two independent thio­urea mol­ecules comprise the asymmetric unit of the title compound, C22H20N2OS. The central N–C(=S)N(H)C(=O) atoms in each mol­ecule are virtually superimposable and each is twisted [C—N—C—S torsion angles = 121.3 (3) and −62.3 (4)°]. The mol­ecules differ only in terms of the relative orientations of the benzyl benzene rings [major difference between the C—N—C—C torsion angles of −146.6 (3) and −132.9 (3)°]. The presence of N—H⋯S hydrogen bonding leads to the formation of supra­molecular chains along the a axis. These are consolidated in the crystal packing by C—H⋯O inter­actions. The crystal was found to be a combined non-merohedral and racemic twin (twin law [\overline{1}]00/0[\overline{1}]0/001), with the fractional contribution of the minor components being approximately 9 and 28%.

Related literature

For our studies of thio­urea and its derivatives, see: Gunasekaran et al. (2010[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2113.]). For the biological activity of thio­urea derivatives, see: Venkatachalam et al. (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]); Yuan et al. (2001[Yuan, Y. F., Wang, J. T., Gimeno, M. C., Laguna, A. & Jones, P. G. (2001). Inorg. Chim. Acta, 324, 309-317.]); Zhou et al. (2004[Zhou, W. Q., Li, B. L., Zhu, L. M., Ding, J. G., Yong, Z., Lu, L. & Yang, X. J. (2004). J. Mol. Struct. 690, 145-150.]). For additional geometric analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2OS

  • Mr = 360.46

  • Monoclinic, P 21

  • a = 7.7338 (5) Å

  • b = 24.3478 (16) Å

  • c = 9.8593 (6) Å

  • β = 90.074 (1)°

  • V = 1856.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.982

  • 17536 measured reflections

  • 8469 independent reflections

  • 7807 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.157

  • S = 1.03

  • 8469 reflections

  • 470 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4101 Friedel pairs

  • Flack parameter: 0.25 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S2 0.86 2.54 3.334 (3) 154
N4—H4⋯S1i 0.86 2.54 3.334 (3) 154
C13—H13⋯O2ii 0.95 2.57 3.193 (5) 124
C14—H14⋯O2ii 0.95 2.60 3.207 (5) 122
C25—H25⋯O1iii 0.95 2.55 3.228 (4) 129
Symmetry codes: (i) x-1, y, z; (ii) [-x+3, y+{\script{1\over 2}}, -z]; (iii) [-x+2, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was investigated in continuation of studies (Gunasekaran et al., 2010) of thiourea and its derivatives, which are useful as anti-tumour, anti-fungal, anti-bacterial, insecticidal, herbicidal, pesticidal agents, and plant-growth regulators (Venkatachalam et al., 2004; Yuan et al., 2001; Zhou et al., 2004).

Two independent molecules comprise the asymmetric unit of (I). The central N–C(S)N(H)C(O) atoms of the first independent molecule, Fig. 1, are virtually super-imposable upon those of the second, Fig. 2. The C7–N2–C8–S1 and C29–N4 –C30–N3 torsion angles of 121.3 (3) and -62.3 (4) °, respectively, indicate significant twists in the central part of each molecule. The major differences between the molecules relate to the orientations of the benzene rings as indicated in Fig. 3. The major conformational difference is quantified in the C8–N1–C9–C10 and C30–N3–C38–C39 torsion angles -146.6 (3) and -132.9 (3) °, respectively. The r.m.s. deviations for bond distances and angles are 0.0105 Å and 0.651 °, respectively (Spek, 2009).

The most notable feature in the crystal packing is the formation of supramolecular chains along the a axis mediated by N–H···S hydrogen bonding, Fig. 4 and Table 1. The chains pack in the ac plane and stack along the b axis with the primary connections along this axis being of the type C–H···O, Fig. 5 and Table 1.

Related literature top

For our studies of thiourea and its derivatives, see: Gunasekaran et al. (2010). For the biological activity of thiourea derivatives, see: Venkatachalam et al. (2004); Yuan et al. (2001); Zhou et al. (2004). For additional geometric analysis, see: Spek (2009).

Experimental top

A solution of benzoyl chloride (0.7029 g, 5 mmol) in acetone (50 ml) was added drop wise to a suspension of potassium thiocyanate (0.4859 g, 5 mmol) in anhydrous acetone (50 ml). The reaction mixture was heated under reflux for 45 minutes and then cooled to room temperature. A solution of dibenzyl amine (0.9864 g, 5 mmol) in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered, washed with water and dried in vacuo. Single crystals were grown at room temperature from its ethyl acetate solution by the diffusion of diethyl ether vapour. Yield 78%; M. Pt. 403 K; FT—IR (KBr) ν(N–H) 3239, ν(CO) 1690, ν(CS) 1314 cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (N–H = 0.86 Å and C–H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(N, C). The maximum and minimum residual electron density peaks of 1.27 and 0.36 e Å-3, respectively, were located 1.65 Å and 0.89 Å from the H38a and S2 atoms, respectively. As the structure is a non-merohedral twin that belongs to a non-centric space group, the non-merohedral twinning and racemic twinning were treated in combination. The twin law -1 0 0 / 0 - 1 0 / 0 0 1 was used as the monoclinic unit cell emulated an orthorhombic unit cell. The Flack parameter refined to 0.25 (8).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Overlay diagram of the first independent molecule (shown in red) and the second independent molecule (shown in blue).
[Figure 4] Fig. 4. Linear supramolecular chain along the a axis in (I) mediated by N–H···S hydrogen bonding, shown as blue dashed lines.
[Figure 5] Fig. 5. Unit-cell contents shown in projection down the c axis in (I). The N–H···S hydrogen bonding and C–H···O contacts are shown as blue and orange dashed lines, respectively.
3-Benzoyl-1,1-dibenzylthiourea top
Crystal data top
C22H20N2OSF(000) = 760
Mr = 360.46Dx = 1.290 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6510 reflections
a = 7.7338 (5) Åθ = 2.2–28.1°
b = 24.3478 (16) ŵ = 0.19 mm1
c = 9.8593 (6) ÅT = 100 K
β = 90.074 (1)°Block, colourless
V = 1856.5 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
8469 independent reflections
Radiation source: fine-focus sealed tube7807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.5°, θmin = 0.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.946, Tmax = 0.982k = 3131
17536 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0934P)2 + 0.2767P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
8469 reflectionsΔρmax = 1.27 e Å3
470 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 4101 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.25 (8)
Crystal data top
C22H20N2OSV = 1856.5 (2) Å3
Mr = 360.46Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.7338 (5) ŵ = 0.19 mm1
b = 24.3478 (16) ÅT = 100 K
c = 9.8593 (6) Å0.30 × 0.20 × 0.10 mm
β = 90.074 (1)°
Data collection top
Bruker SMART APEX
diffractometer
8469 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7807 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.982Rint = 0.055
17536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.157Δρmax = 1.27 e Å3
S = 1.03Δρmin = 0.36 e Å3
8469 reflectionsAbsolute structure: Flack (1983), 4101 Friedel pairs
470 parametersAbsolute structure parameter: 0.25 (8)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.52015 (10)0.49995 (3)0.21954 (8)0.01637 (17)
S21.02727 (11)0.46914 (3)0.10081 (9)0.01665 (17)
O11.3589 (3)0.66362 (10)0.2194 (3)0.0228 (6)
O20.8629 (3)0.30856 (10)0.0894 (3)0.0239 (6)
N11.5083 (4)0.58006 (11)0.0339 (3)0.0157 (6)
N21.2782 (4)0.57501 (10)0.1861 (3)0.0140 (5)
H21.19110.55310.18430.017*
N31.0001 (4)0.38816 (12)0.2845 (3)0.0179 (6)
N40.7766 (4)0.39659 (11)0.1265 (3)0.0162 (6)
H40.68990.41870.12770.019*
C11.0820 (4)0.63713 (13)0.3027 (3)0.0154 (6)
C20.9587 (5)0.59635 (14)0.3240 (4)0.0204 (7)
H2A0.98220.55970.29690.024*
C30.8020 (5)0.60887 (16)0.3846 (4)0.0242 (8)
H30.71830.58090.39860.029*
C40.7672 (5)0.66233 (15)0.4247 (4)0.0239 (8)
H4A0.66010.67080.46680.029*
C50.8880 (5)0.70339 (15)0.4038 (4)0.0240 (8)
H50.86350.74000.43100.029*
C61.0446 (5)0.69113 (14)0.3431 (4)0.0208 (7)
H61.12730.71940.32870.025*
C71.2514 (4)0.62775 (13)0.2336 (3)0.0151 (6)
C81.4372 (4)0.55502 (13)0.1409 (3)0.0139 (6)
C91.6810 (4)0.56209 (14)0.0142 (4)0.0195 (7)
H9A1.66540.53360.08490.023*
H9B1.74410.54510.06240.023*
C101.7895 (4)0.60781 (13)0.0715 (4)0.0176 (7)
C111.8660 (5)0.60174 (15)0.1997 (4)0.0214 (7)
H111.84240.57000.25270.026*
C121.9766 (5)0.64222 (16)0.2494 (4)0.0234 (8)
H122.02860.63800.33600.028*
C132.0104 (5)0.68838 (16)0.1727 (4)0.0252 (8)
H132.08560.71590.20690.030*
C141.9355 (5)0.69483 (16)0.0462 (4)0.0272 (8)
H141.96000.72670.00590.033*
C151.8248 (5)0.65500 (15)0.0050 (4)0.0242 (8)
H151.77310.65980.09160.029*
C161.4092 (5)0.61491 (14)0.0616 (3)0.0178 (7)
H16A1.47510.64890.08100.021*
H16B1.29780.62550.01970.021*
C171.3751 (4)0.58415 (14)0.1933 (3)0.0163 (6)
C181.4287 (4)0.60578 (15)0.3151 (4)0.0201 (7)
H181.49290.63900.31660.024*
C191.3891 (5)0.57905 (16)0.4367 (4)0.0224 (7)
H191.42470.59440.52070.027*
C201.2973 (5)0.52985 (17)0.4347 (4)0.0265 (8)
H201.27040.51150.51710.032*
C211.2453 (5)0.50774 (16)0.3114 (4)0.0280 (8)
H211.18330.47410.30980.034*
C221.2830 (5)0.53436 (15)0.1908 (4)0.0235 (8)
H221.24680.51910.10680.028*
C230.5896 (4)0.33461 (14)0.0012 (3)0.0152 (6)
C240.5720 (5)0.28392 (14)0.0668 (4)0.0208 (7)
H240.66190.25740.06070.025*
C250.4246 (5)0.27233 (15)0.1403 (4)0.0237 (8)
H250.41450.23830.18690.028*
C260.2900 (5)0.31064 (17)0.1465 (4)0.0279 (9)
H260.18650.30190.19380.033*
C270.3071 (5)0.36096 (15)0.0840 (4)0.0240 (8)
H270.21740.38750.09110.029*
C280.4566 (4)0.37286 (14)0.0104 (4)0.0196 (7)
H280.46770.40740.03370.024*
C290.7538 (4)0.34428 (14)0.0742 (3)0.0158 (6)
C300.9368 (4)0.41485 (13)0.1778 (3)0.0153 (6)
C310.8927 (5)0.35268 (14)0.3720 (4)0.0208 (7)
H31A0.95260.31730.38780.025*
H31B0.78120.34490.32650.025*
C320.8599 (5)0.38108 (14)0.5071 (3)0.0182 (7)
C330.9196 (5)0.35777 (15)0.6274 (4)0.0199 (7)
H330.98310.32440.62510.024*
C340.8866 (5)0.38311 (16)0.7499 (4)0.0221 (7)
H340.92600.36680.83190.026*
C350.7964 (5)0.43216 (16)0.7538 (4)0.0246 (8)
H350.77490.44970.83820.030*
C360.7367 (5)0.45597 (15)0.6329 (4)0.0263 (8)
H360.67380.48950.63510.032*
C370.7702 (5)0.43033 (16)0.5101 (4)0.0271 (8)
H370.73150.44660.42780.033*
C381.1725 (5)0.40062 (15)0.3372 (4)0.0230 (8)
H38A1.16070.42160.42270.028*
H38B1.23390.42420.27120.028*
C391.2794 (5)0.35003 (15)0.3639 (4)0.0212 (7)
C401.3815 (5)0.34745 (16)0.4800 (4)0.0244 (8)
H401.37630.37600.54570.029*
C411.4926 (5)0.30219 (17)0.4997 (5)0.0304 (9)
H411.56180.30010.57930.036*
C421.5013 (5)0.26096 (16)0.4041 (4)0.0288 (9)
H421.57890.23110.41670.035*
C431.3972 (6)0.26289 (17)0.2894 (5)0.0308 (9)
H431.40200.23410.22460.037*
C441.2852 (5)0.30727 (16)0.2692 (4)0.0255 (8)
H441.21300.30840.19120.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0164 (4)0.0154 (4)0.0173 (4)0.0015 (3)0.0008 (3)0.0026 (3)
S20.0153 (4)0.0147 (4)0.0199 (4)0.0025 (3)0.0031 (3)0.0014 (3)
O10.0184 (12)0.0191 (12)0.0310 (15)0.0043 (10)0.0077 (11)0.0040 (11)
O20.0204 (13)0.0205 (12)0.0309 (15)0.0037 (10)0.0070 (11)0.0070 (11)
N10.0158 (14)0.0158 (13)0.0154 (14)0.0053 (11)0.0039 (11)0.0037 (10)
N20.0145 (13)0.0118 (12)0.0157 (14)0.0011 (10)0.0029 (11)0.0022 (10)
N30.0171 (14)0.0161 (13)0.0206 (15)0.0071 (11)0.0011 (12)0.0006 (11)
N40.0141 (13)0.0154 (13)0.0191 (14)0.0001 (10)0.0016 (11)0.0022 (11)
C10.0141 (15)0.0159 (15)0.0162 (16)0.0013 (12)0.0003 (12)0.0014 (12)
C20.0191 (17)0.0161 (16)0.0259 (19)0.0012 (13)0.0042 (14)0.0053 (13)
C30.0165 (17)0.0258 (18)0.030 (2)0.0058 (14)0.0078 (15)0.0075 (15)
C40.0172 (17)0.0254 (18)0.029 (2)0.0016 (14)0.0050 (15)0.0027 (15)
C50.027 (2)0.0170 (17)0.027 (2)0.0042 (14)0.0069 (16)0.0024 (14)
C60.0264 (19)0.0152 (16)0.0209 (18)0.0008 (13)0.0076 (14)0.0031 (13)
C70.0164 (16)0.0163 (15)0.0125 (15)0.0004 (12)0.0008 (12)0.0005 (12)
C80.0109 (14)0.0167 (15)0.0141 (15)0.0023 (12)0.0017 (12)0.0025 (12)
C90.0160 (16)0.0184 (16)0.0242 (18)0.0031 (13)0.0087 (14)0.0039 (14)
C100.0139 (15)0.0160 (15)0.0228 (18)0.0004 (12)0.0015 (13)0.0021 (13)
C110.0162 (16)0.0210 (17)0.0271 (19)0.0009 (13)0.0072 (14)0.0023 (14)
C120.0160 (16)0.0312 (19)0.0231 (19)0.0009 (14)0.0057 (14)0.0039 (15)
C130.0193 (18)0.0255 (18)0.031 (2)0.0004 (14)0.0003 (15)0.0101 (16)
C140.031 (2)0.0213 (18)0.029 (2)0.0020 (15)0.0030 (16)0.0002 (15)
C150.030 (2)0.0186 (17)0.0242 (19)0.0007 (14)0.0005 (15)0.0011 (14)
C160.0190 (16)0.0179 (15)0.0163 (16)0.0058 (12)0.0048 (13)0.0052 (13)
C170.0130 (15)0.0192 (15)0.0166 (16)0.0035 (12)0.0004 (12)0.0034 (13)
C180.0195 (17)0.0227 (17)0.0180 (17)0.0022 (13)0.0012 (13)0.0027 (14)
C190.0211 (18)0.032 (2)0.0141 (17)0.0012 (15)0.0003 (14)0.0044 (14)
C200.0238 (19)0.031 (2)0.0248 (19)0.0036 (15)0.0021 (15)0.0018 (16)
C210.031 (2)0.0244 (19)0.029 (2)0.0068 (15)0.0015 (16)0.0006 (15)
C220.0289 (19)0.0224 (17)0.0192 (18)0.0051 (15)0.0052 (15)0.0039 (14)
C230.0145 (15)0.0179 (15)0.0132 (15)0.0013 (12)0.0003 (12)0.0014 (12)
C240.0203 (18)0.0170 (16)0.0252 (19)0.0012 (13)0.0008 (15)0.0043 (14)
C250.0228 (18)0.0198 (17)0.028 (2)0.0004 (14)0.0053 (15)0.0087 (15)
C260.0183 (18)0.0298 (19)0.036 (2)0.0001 (15)0.0116 (16)0.0074 (17)
C270.0180 (18)0.0263 (19)0.028 (2)0.0045 (14)0.0039 (15)0.0032 (15)
C280.0181 (17)0.0207 (16)0.0199 (17)0.0000 (13)0.0019 (14)0.0019 (13)
C290.0175 (16)0.0178 (15)0.0121 (15)0.0004 (12)0.0002 (12)0.0000 (12)
C300.0155 (15)0.0130 (14)0.0172 (16)0.0015 (12)0.0033 (12)0.0041 (12)
C310.0266 (18)0.0189 (16)0.0170 (17)0.0093 (14)0.0004 (14)0.0010 (13)
C320.0219 (17)0.0185 (16)0.0142 (16)0.0085 (13)0.0002 (13)0.0008 (13)
C330.0189 (17)0.0204 (17)0.0204 (18)0.0023 (13)0.0012 (13)0.0030 (13)
C340.0172 (17)0.0334 (19)0.0156 (17)0.0018 (14)0.0013 (13)0.0018 (15)
C350.0258 (19)0.029 (2)0.0187 (18)0.0012 (15)0.0002 (15)0.0018 (15)
C360.027 (2)0.0238 (19)0.028 (2)0.0093 (15)0.0025 (16)0.0043 (15)
C370.027 (2)0.0275 (19)0.027 (2)0.0015 (15)0.0071 (16)0.0053 (16)
C380.0217 (17)0.0205 (17)0.027 (2)0.0067 (14)0.0072 (15)0.0003 (14)
C390.0210 (18)0.0235 (17)0.0190 (17)0.0059 (14)0.0022 (14)0.0027 (14)
C400.0188 (18)0.0309 (19)0.0234 (19)0.0093 (15)0.0040 (14)0.0052 (15)
C410.0180 (18)0.036 (2)0.037 (2)0.0102 (16)0.0069 (16)0.0093 (17)
C420.0201 (18)0.0238 (18)0.043 (2)0.0037 (15)0.0075 (17)0.0078 (16)
C430.034 (2)0.0236 (19)0.035 (2)0.0015 (17)0.0039 (18)0.0001 (16)
C440.031 (2)0.0240 (18)0.0214 (19)0.0031 (15)0.0013 (15)0.0002 (15)
Geometric parameters (Å, º) top
S1—C81.676 (3)C18—H180.9500
S2—C301.678 (3)C19—C201.393 (5)
O1—C71.214 (4)C19—H190.9500
O2—C291.221 (4)C20—C211.390 (6)
N1—C81.337 (4)C20—H200.9500
N1—C161.480 (4)C21—C221.385 (5)
N1—C91.484 (4)C21—H210.9500
N2—C71.382 (4)C22—H220.9500
N2—C81.396 (4)C23—C281.390 (5)
N2—H20.8600C23—C241.400 (5)
N3—C301.329 (4)C23—C291.489 (5)
N3—C381.462 (4)C24—C251.380 (5)
N3—C311.477 (4)C24—H240.9500
N4—C291.386 (4)C25—C261.399 (5)
N4—C301.410 (4)C25—H250.9500
N4—H40.8600C26—C271.378 (5)
C1—C21.393 (5)C26—H260.9500
C1—C61.404 (5)C27—C281.395 (5)
C1—C71.495 (5)C27—H270.9500
C2—C31.386 (5)C28—H280.9500
C2—H2A0.9500C31—C321.522 (5)
C3—C41.387 (5)C31—H31A0.9900
C3—H30.9500C31—H31B0.9900
C4—C51.384 (5)C32—C371.386 (5)
C4—H4A0.9500C32—C331.393 (5)
C5—C61.384 (5)C33—C341.381 (5)
C5—H50.9500C33—H330.9500
C6—H60.9500C34—C351.384 (5)
C9—C101.504 (5)C34—H340.9500
C9—H9A0.9900C35—C361.403 (5)
C9—H9B0.9900C35—H350.9500
C10—C151.401 (5)C36—C371.387 (6)
C10—C111.405 (5)C36—H360.9500
C11—C121.394 (5)C37—H370.9500
C11—H110.9500C38—C391.507 (5)
C12—C131.379 (6)C38—H38A0.9900
C12—H120.9500C38—H38B0.9900
C13—C141.384 (6)C39—C401.391 (5)
C13—H130.9500C39—C441.399 (5)
C14—C151.389 (5)C40—C411.411 (6)
C14—H140.9500C40—H400.9500
C15—H150.9500C41—C421.379 (6)
C16—C171.522 (5)C41—H410.9500
C16—H16A0.9900C42—C431.388 (6)
C16—H16B0.9900C42—H420.9500
C17—C181.376 (5)C43—C441.399 (6)
C17—C221.406 (5)C43—H430.9500
C18—C191.398 (5)C44—H440.9500
C8—N1—C16123.3 (3)C22—C21—C20120.6 (3)
C8—N1—C9119.3 (3)C22—C21—H21119.7
C16—N1—C9115.5 (3)C20—C21—H21119.7
C7—N2—C8124.4 (3)C21—C22—C17119.6 (3)
C7—N2—H2117.8C21—C22—H22120.2
C8—N2—H2117.8C17—C22—H22120.2
C30—N3—C38121.0 (3)C28—C23—C24119.3 (3)
C30—N3—C31122.8 (3)C28—C23—C29123.9 (3)
C38—N3—C31115.3 (3)C24—C23—C29116.9 (3)
C29—N4—C30122.3 (3)C25—C24—C23120.2 (3)
C29—N4—H4118.8C25—C24—H24119.9
C30—N4—H4118.8C23—C24—H24119.9
C2—C1—C6118.9 (3)C24—C25—C26120.1 (3)
C2—C1—C7124.1 (3)C24—C25—H25120.0
C6—C1—C7117.0 (3)C26—C25—H25120.0
C3—C2—C1120.5 (3)C27—C26—C25120.2 (3)
C3—C2—H2A119.8C27—C26—H26119.9
C1—C2—H2A119.8C25—C26—H26119.9
C2—C3—C4119.9 (3)C26—C27—C28119.8 (3)
C2—C3—H3120.0C26—C27—H27120.1
C4—C3—H3120.0C28—C27—H27120.1
C5—C4—C3120.3 (3)C23—C28—C27120.5 (3)
C5—C4—H4A119.9C23—C28—H28119.7
C3—C4—H4A119.9C27—C28—H28119.7
C6—C5—C4120.0 (3)O2—C29—N4121.4 (3)
C6—C5—H5120.0O2—C29—C23122.5 (3)
C4—C5—H5120.0N4—C29—C23116.1 (3)
C5—C6—C1120.3 (3)N3—C30—N4116.9 (3)
C5—C6—H6119.8N3—C30—S2126.2 (2)
C1—C6—H6119.8N4—C30—S2116.9 (3)
O1—C7—N2121.7 (3)N3—C31—C32109.9 (3)
O1—C7—C1122.9 (3)N3—C31—H31A109.7
N2—C7—C1115.4 (3)C32—C31—H31A109.7
N1—C8—N2117.1 (3)N3—C31—H31B109.7
N1—C8—S1124.9 (3)C32—C31—H31B109.7
N2—C8—S1117.9 (2)H31A—C31—H31B108.2
N1—C9—C10113.8 (3)C37—C32—C33120.0 (3)
N1—C9—H9A108.8C37—C32—C31119.7 (3)
C10—C9—H9A108.8C33—C32—C31120.3 (3)
N1—C9—H9B108.8C34—C33—C32120.1 (3)
C10—C9—H9B108.8C34—C33—H33119.9
H9A—C9—H9B107.7C32—C33—H33119.9
C15—C10—C11119.3 (3)C33—C34—C35120.2 (3)
C15—C10—C9120.9 (3)C33—C34—H34119.9
C11—C10—C9119.7 (3)C35—C34—H34119.9
C12—C11—C10120.1 (3)C34—C35—C36119.9 (3)
C12—C11—H11120.0C34—C35—H35120.1
C10—C11—H11120.0C36—C35—H35120.1
C13—C12—C11120.0 (4)C37—C36—C35119.6 (3)
C13—C12—H12120.0C37—C36—H36120.2
C11—C12—H12120.0C35—C36—H36120.2
C12—C13—C14120.4 (4)C32—C37—C36120.1 (4)
C12—C13—H13119.8C32—C37—H37119.9
C14—C13—H13119.8C36—C37—H37119.9
C13—C14—C15120.5 (4)N3—C38—C39113.1 (3)
C13—C14—H14119.8N3—C38—H38A109.0
C15—C14—H14119.8C39—C38—H38A109.0
C14—C15—C10119.8 (4)N3—C38—H38B109.0
C14—C15—H15120.1C39—C38—H38B109.0
C10—C15—H15120.1H38A—C38—H38B107.8
N1—C16—C17110.5 (3)C40—C39—C44119.8 (4)
N1—C16—H16A109.6C40—C39—C38119.4 (3)
C17—C16—H16A109.6C44—C39—C38120.7 (3)
N1—C16—H16B109.6C39—C40—C41119.6 (4)
C17—C16—H16B109.6C39—C40—H40120.2
H16A—C16—H16B108.1C41—C40—H40120.2
C18—C17—C22119.9 (3)C42—C41—C40120.3 (4)
C18—C17—C16120.3 (3)C42—C41—H41119.8
C22—C17—C16119.7 (3)C40—C41—H41119.8
C17—C18—C19120.3 (3)C41—C42—C43120.2 (4)
C17—C18—H18119.8C41—C42—H42119.9
C19—C18—H18119.8C43—C42—H42119.9
C20—C19—C18119.9 (3)C42—C43—C44120.0 (4)
C20—C19—H19120.0C42—C43—H43120.0
C18—C19—H19120.0C44—C43—H43120.0
C21—C20—C19119.6 (4)C43—C44—C39120.0 (4)
C21—C20—H20120.2C43—C44—H44120.0
C19—C20—H20120.2C39—C44—H44120.0
C6—C1—C2—C30.2 (5)C28—C23—C24—C250.3 (5)
C7—C1—C2—C3177.6 (3)C29—C23—C24—C25179.0 (3)
C1—C2—C3—C40.2 (6)C23—C24—C25—C261.8 (6)
C2—C3—C4—C50.5 (6)C24—C25—C26—C272.8 (7)
C3—C4—C5—C60.3 (6)C25—C26—C27—C282.3 (6)
C4—C5—C6—C10.1 (6)C24—C23—C28—C270.1 (5)
C2—C1—C6—C50.4 (5)C29—C23—C28—C27179.4 (3)
C7—C1—C6—C5177.9 (3)C26—C27—C28—C230.9 (6)
C8—N2—C7—O112.0 (5)C30—N4—C29—O211.8 (5)
C8—N2—C7—C1168.0 (3)C30—N4—C29—C23168.1 (3)
C2—C1—C7—O1178.0 (3)C28—C23—C29—O2174.3 (3)
C6—C1—C7—O14.6 (5)C24—C23—C29—O26.4 (5)
C2—C1—C7—N22.1 (5)C28—C23—C29—N45.8 (5)
C6—C1—C7—N2175.3 (3)C24—C23—C29—N4173.5 (3)
C16—N1—C8—N219.0 (5)C38—N3—C30—N4174.2 (3)
C9—N1—C8—N2177.2 (3)C31—N3—C30—N417.7 (5)
C16—N1—C8—S1158.1 (3)C38—N3—C30—S27.3 (5)
C9—N1—C8—S15.7 (5)C31—N3—C30—S2160.7 (3)
C7—N2—C8—N161.4 (4)C29—N4—C30—N362.3 (4)
C7—N2—C8—S1121.3 (3)C29—N4—C30—S2119.1 (3)
C8—N1—C9—C10146.6 (3)C30—N3—C31—C32106.5 (4)
C16—N1—C9—C1048.4 (4)C38—N3—C31—C3262.2 (4)
N1—C9—C10—C1555.3 (5)N3—C31—C32—C3762.2 (4)
N1—C9—C10—C11128.9 (3)N3—C31—C32—C33117.7 (3)
C15—C10—C11—C120.4 (5)C37—C32—C33—C341.3 (5)
C9—C10—C11—C12175.5 (3)C31—C32—C33—C34178.8 (3)
C10—C11—C12—C130.2 (5)C32—C33—C34—C351.0 (5)
C11—C12—C13—C140.1 (6)C33—C34—C35—C360.6 (6)
C12—C13—C14—C150.2 (6)C34—C35—C36—C370.6 (6)
C13—C14—C15—C100.4 (6)C33—C32—C37—C361.3 (6)
C11—C10—C15—C140.5 (5)C31—C32—C37—C36178.8 (4)
C9—C10—C15—C14175.3 (3)C35—C36—C37—C320.9 (6)
C8—N1—C16—C17103.7 (4)C30—N3—C38—C39132.9 (3)
C9—N1—C16—C1760.7 (4)C31—N3—C38—C3958.2 (4)
N1—C16—C17—C18123.1 (3)N3—C38—C39—C40139.2 (3)
N1—C16—C17—C2259.2 (4)N3—C38—C39—C4444.8 (5)
C22—C17—C18—C191.2 (5)C44—C39—C40—C411.3 (5)
C16—C17—C18—C19176.5 (3)C38—C39—C40—C41174.8 (3)
C17—C18—C19—C201.0 (5)C39—C40—C41—C420.5 (6)
C18—C19—C20—C210.2 (6)C40—C41—C42—C431.8 (6)
C19—C20—C21—C220.4 (6)C41—C42—C43—C441.2 (6)
C20—C21—C22—C170.2 (6)C42—C43—C44—C390.7 (6)
C18—C17—C22—C210.7 (5)C40—C39—C44—C431.9 (6)
C16—C17—C22—C21177.1 (3)C38—C39—C44—C43174.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S20.862.543.334 (3)154
N4—H4···S1i0.862.543.334 (3)154
C13—H13···O2ii0.952.573.193 (5)124
C14—H14···O2ii0.952.603.207 (5)122
C25—H25···O1iii0.952.553.228 (4)129
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1/2, z; (iii) x+2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC22H20N2OS
Mr360.46
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)7.7338 (5), 24.3478 (16), 9.8593 (6)
β (°) 90.074 (1)
V3)1856.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17536, 8469, 7807
Rint0.055
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 1.03
No. of reflections8469
No. of parameters470
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 0.36
Absolute structureFlack (1983), 4101 Friedel pairs
Absolute structure parameter0.25 (8)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S20.862.543.334 (3)153.8
N4—H4···S1i0.862.543.334 (3)153.6
C13—H13···O2ii0.952.573.193 (5)124
C14—H14···O2ii0.952.603.207 (5)122
C25—H25···O1iii0.952.553.228 (4)129
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1/2, z; (iii) x+2, y1/2, z.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NG thanks the NITT for a Fellowship. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Y. F., Wang, J. T., Gimeno, M. C., Laguna, A. & Jones, P. G. (2001). Inorg. Chim. Acta, 324, 309–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, W. Q., Li, B. L., Zhu, L. M., Ding, J. G., Yong, Z., Lu, L. & Yang, X. J. (2004). J. Mol. Struct. 690, 145–150.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2572-o2573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds