organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3,3-di­butyl­thio­urea

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 September 2010; accepted 16 September 2010; online 25 September 2010)

The title mol­ecule, C16H24N2OS, is twisted about the central N(H)—C bond with a C—N(H)—C—N torsion angle of −62.67 (15)°. The carbonyl group is twisted out of the plane of the benzene ring, forming a C—C—C=O torsion angle of −25.06 (17)°. In the crystal, mol­ecules related by centres of symmetry are linked by pairs of inter­molecular N—H⋯S hydrogen bonds, forming eight-membered {⋯HNCS}2 synthons. These are further connected by weak via C—H⋯O contacts, forming a two-dimensional array in the bc plane.

Related literature

For pharmaceutical applications of thio­urea derivatives, see: Binzet et al. (2009[Binzet, G., Kulcu, N., Florke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454-3462.]); Lipowska et al. (1996[Lipowska, M., Hayes, B. L., Hansen, L., Taylor, A. Jr & Marzilli, L. G. (1996). Inorg. Chem. 35, 4227-4231.]). For the coordination potential of thio­urea derivatives, see: Henderson et al. (2002[Henderson, W., Nicholson, B. K., Dinger, B. M. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210-218.]); Hallale et al. (2005[Hallale, O., Bourne, S. A. & Koch, K. R. (2005). CrystEngComm, 7, 161-166.]). For the use of ruthenium(III) complexes of thio­ureas as catalysts, see: Gunasekaran & Karvembu (2010[Gunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun. 13, 952-955.]). For related structures, see: Gunasekaran et al. (2010a[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2113.],b[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2572-o2573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N2OS

  • Mr = 292.43

  • Monoclinic, P 21 /c

  • a = 10.3213 (7) Å

  • b = 15.7043 (11) Å

  • c = 10.0992 (7) Å

  • β = 98.751 (1)°

  • V = 1617.91 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 0.971

  • 15120 measured reflections

  • 3725 independent reflections

  • 3204 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.03

  • 3725 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯S1i 0.85 (1) 2.64 (1) 3.4547 (11) 160 (1)
C2—H2a⋯O1ii 0.95 2.47 3.4102 (16) 173
C14—H14b⋯O1iii 0.99 2.58 3.3559 (16) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiourea and its derivatives have important pharmaceutical applications (Binzet et al., 2009; Lipowska et al., 1996). These species are also considered as versatile and attractive ligands due to their coordination ability to a wide range of metal centres, either as neutral ligands, or as mono- or di-anions (Henderson et al., 2002; Hallale et al., 2005). Their coordination complexes can also exhibit useful properties. As an example of a recent application, ruthenium(III) complexes containing these ligands have recently been used as catalysts for oxidation of alcohols to carbonyl compounds (Gunasekaran & Karvembu, 2010). In continuation of structural studies of these molecules (Gunasekaran et al., 2010a; Gunasekaran et al., 2010b), (I), the crystal structure of the title compound was carried out.

In (I), the molecule is twisted about the central N1—C8 bond as reflected in the value of the C7—N1—C8—S1 torsion angle of 119.81 (11) ° and C7—N1—C8—-N2 of -62.67 (15) ° (see Fig. 1). The carbonyl group is twisted out of the plane of the benzene ring to which it is attached [the C2—C1—C7—O1 dihedral angle = -25.06 (17) °], and the butyl groups lie on opposite sides of the mean plane formed by the N2S atoms.

The most prominent intermolecular interactions are of the type N—H···S, occurring between centrosymmetrically related molecules to form an eight-membered {···HNCS}2 synthon, Table 1. The dimeric aggregates are linked into a 2-D array via C—H···O contacts, Fig. 2 and Table 1. The layers thus formed stack along the a axis, Fig. 3.

Related literature top

For pharmaceutical applications of thiourea derivatives, see: Binzet et al. (2009); Lipowska et al. (1996). For the coordination potential of thiourea derivatives, see: Henderson et al. (2002); Hallale et al. (2005). For the use of ruthenium(III) complexes of thioureas as catalysts, see: Gunasekaran & Karvembu (2010). For related structures, see: Gunasekaran et al. (2010a,b).

Experimental top

A solution of benzoyl chloride (0.7029 g, 5 mmol) in acetone (50 ml) was added drop wise to a suspension of potassium thiocyanate (0.4859 g, 5 mmol) in anhydrous acetone (50 ml). The reaction mixture was heated under reflux for 45 min and then cooled to room temperature. A solution of dibutyl amine (0.6462 g, 5 mmol) in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered, washed with water and dried in vacuo. Single crystals of (I) for X-ray diffraction were grown at room temperature from its acetone solution. M. pt. 358–360 K; Yield 76%. FT—IR (KBr) ν(N—H) 3174, ν(CO) 1688, ν(CS) 1243 cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the 2-D array in (I). The N–H···S hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the a axis in (I) showing the stacking of layers. The N–H···S hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively.
1-Benzoyl-3,3-dibutylthiourea top
Crystal data top
C16H24N2OSF(000) = 632
Mr = 292.43Dx = 1.201 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5696 reflections
a = 10.3213 (7) Åθ = 4.4–28.3°
b = 15.7043 (11) ŵ = 0.20 mm1
c = 10.0992 (7) ÅT = 100 K
β = 98.751 (1)°Block, colourless
V = 1617.91 (19) Å30.40 × 0.40 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3725 independent reflections
Radiation source: fine-focus sealed tube3204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.925, Tmax = 0.971k = 2020
15120 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.602P]
where P = (Fo2 + 2Fc2)/3
3725 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C16H24N2OSV = 1617.91 (19) Å3
Mr = 292.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3213 (7) ŵ = 0.20 mm1
b = 15.7043 (11) ÅT = 100 K
c = 10.0992 (7) Å0.40 × 0.40 × 0.15 mm
β = 98.751 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3725 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3204 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.971Rint = 0.036
15120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
3725 reflectionsΔρmin = 0.26 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31557 (3)0.56922 (2)0.46025 (3)0.01948 (10)
O10.49254 (9)0.58166 (6)0.12400 (9)0.0197 (2)
N10.53208 (10)0.59664 (7)0.35231 (10)0.0161 (2)
H1n0.5663 (15)0.5638 (9)0.4155 (13)0.027 (4)*
N20.36726 (10)0.69784 (7)0.30300 (10)0.0178 (2)
C10.70516 (12)0.54489 (8)0.23442 (12)0.0169 (2)
C20.73420 (13)0.49345 (8)0.13018 (13)0.0214 (3)
H2A0.66670.47670.06040.026*
C30.86217 (14)0.46701 (9)0.12914 (15)0.0275 (3)
H3A0.88210.43110.05920.033*
C40.96133 (14)0.49266 (9)0.22958 (15)0.0281 (3)
H4A1.04890.47460.22780.034*
C50.93326 (13)0.54464 (9)0.33254 (14)0.0252 (3)
H5A1.00140.56240.40100.030*
C60.80499 (13)0.57064 (8)0.33523 (13)0.0205 (3)
H6A0.78530.60600.40590.025*
C70.56729 (12)0.57488 (7)0.22861 (12)0.0159 (2)
C80.40510 (12)0.62549 (8)0.36472 (12)0.0164 (2)
C90.23215 (13)0.72865 (8)0.29594 (13)0.0205 (3)
H9A0.23200.79160.29960.025*
H9B0.19440.70700.37390.025*
C100.14839 (12)0.69899 (8)0.16698 (13)0.0202 (3)
H10A0.14030.63620.16870.024*
H10B0.19260.71440.08990.024*
C110.01211 (14)0.73842 (9)0.14782 (14)0.0274 (3)
H11A0.02980.72610.22760.033*
H11B0.02020.80100.14070.033*
C120.07515 (14)0.70524 (10)0.02386 (14)0.0282 (3)
H12A0.16170.73210.01660.042*
H12B0.08450.64340.03080.042*
H12C0.03560.71890.05580.042*
C130.45409 (13)0.75523 (8)0.24042 (12)0.0194 (3)
H13A0.40050.79030.17110.023*
H13B0.51530.72080.19590.023*
C140.53205 (13)0.81332 (8)0.34351 (13)0.0218 (3)
H14A0.59340.77860.40650.026*
H14B0.47130.84250.39560.026*
C150.60954 (14)0.87993 (8)0.27769 (14)0.0247 (3)
H15A0.54730.91630.21840.030*
H15B0.65740.91680.34830.030*
C160.70717 (14)0.84140 (9)0.19606 (14)0.0265 (3)
H16A0.75380.88710.15700.040*
H16B0.66030.80610.12420.040*
H16C0.77030.80620.25440.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01575 (16)0.02258 (17)0.02072 (17)0.00138 (11)0.00475 (12)0.00432 (12)
O10.0204 (5)0.0224 (4)0.0150 (4)0.0002 (3)0.0014 (4)0.0001 (3)
N10.0144 (5)0.0204 (5)0.0133 (5)0.0021 (4)0.0010 (4)0.0027 (4)
N20.0170 (5)0.0197 (5)0.0162 (5)0.0014 (4)0.0007 (4)0.0015 (4)
C10.0165 (6)0.0178 (6)0.0169 (6)0.0016 (4)0.0042 (5)0.0036 (4)
C20.0238 (7)0.0202 (6)0.0207 (6)0.0016 (5)0.0048 (5)0.0000 (5)
C30.0292 (8)0.0245 (7)0.0310 (8)0.0039 (6)0.0121 (6)0.0009 (6)
C40.0199 (7)0.0292 (7)0.0372 (8)0.0061 (5)0.0102 (6)0.0093 (6)
C50.0179 (7)0.0312 (7)0.0258 (7)0.0025 (5)0.0010 (5)0.0064 (6)
C60.0191 (6)0.0247 (6)0.0178 (6)0.0020 (5)0.0038 (5)0.0020 (5)
C70.0174 (6)0.0143 (5)0.0160 (6)0.0028 (4)0.0026 (5)0.0009 (4)
C80.0146 (6)0.0199 (6)0.0140 (6)0.0005 (4)0.0001 (4)0.0013 (4)
C90.0199 (6)0.0220 (6)0.0191 (6)0.0066 (5)0.0015 (5)0.0000 (5)
C100.0190 (6)0.0241 (6)0.0171 (6)0.0036 (5)0.0016 (5)0.0003 (5)
C110.0239 (7)0.0314 (7)0.0248 (7)0.0096 (6)0.0025 (5)0.0028 (6)
C120.0210 (7)0.0386 (8)0.0238 (7)0.0056 (6)0.0008 (5)0.0007 (6)
C130.0229 (6)0.0174 (6)0.0176 (6)0.0008 (5)0.0019 (5)0.0023 (5)
C140.0217 (7)0.0247 (6)0.0190 (6)0.0007 (5)0.0028 (5)0.0045 (5)
C150.0270 (7)0.0216 (6)0.0247 (7)0.0026 (5)0.0013 (5)0.0051 (5)
C160.0227 (7)0.0313 (7)0.0253 (7)0.0010 (6)0.0029 (6)0.0025 (6)
Geometric parameters (Å, º) top
S1—C81.6843 (13)C9—H9B0.9900
O1—C71.2144 (15)C10—C111.5221 (18)
N1—C71.3955 (16)C10—H10A0.9900
N1—C81.4102 (16)C10—H10B0.9900
N1—H1n0.854 (9)C11—C121.5188 (19)
N2—C81.3259 (16)C11—H11A0.9900
N2—C91.4675 (16)C11—H11B0.9900
N2—C131.4790 (16)C12—H12A0.9800
C1—C61.3938 (18)C12—H12B0.9800
C1—C21.3953 (18)C12—H12C0.9800
C1—C71.4915 (17)C13—C141.5194 (17)
C2—C31.3861 (19)C13—H13A0.9900
C2—H2A0.9500C13—H13B0.9900
C3—C41.387 (2)C14—C151.5289 (19)
C3—H3A0.9500C14—H14A0.9900
C4—C51.387 (2)C14—H14B0.9900
C4—H4A0.9500C15—C161.5212 (19)
C5—C61.3896 (19)C15—H15A0.9900
C5—H5A0.9500C15—H15B0.9900
C6—H6A0.9500C16—H16A0.9800
C9—C101.5225 (18)C16—H16B0.9800
C9—H9A0.9900C16—H16C0.9800
C7—N1—C8122.03 (10)C9—C10—H10B109.2
C7—N1—H1n112.7 (11)C11—C10—H10B109.2
C8—N1—H1n114.3 (11)H10A—C10—H10B107.9
C8—N2—C9121.01 (11)C12—C11—C10112.69 (12)
C8—N2—C13124.66 (11)C12—C11—H11A109.1
C9—N2—C13114.30 (10)C10—C11—H11A109.1
C6—C1—C2119.95 (12)C12—C11—H11B109.1
C6—C1—C7122.14 (11)C10—C11—H11B109.1
C2—C1—C7117.80 (11)H11A—C11—H11B107.8
C3—C2—C1119.57 (13)C11—C12—H12A109.5
C3—C2—H2A120.2C11—C12—H12B109.5
C1—C2—H2A120.2H12A—C12—H12B109.5
C4—C3—C2120.37 (13)C11—C12—H12C109.5
C4—C3—H3A119.8H12A—C12—H12C109.5
C2—C3—H3A119.8H12B—C12—H12C109.5
C3—C4—C5120.29 (13)N2—C13—C14111.42 (10)
C3—C4—H4A119.9N2—C13—H13A109.3
C5—C4—H4A119.9C14—C13—H13A109.3
C4—C5—C6119.73 (13)N2—C13—H13B109.3
C4—C5—H5A120.1C14—C13—H13B109.3
C6—C5—H5A120.1H13A—C13—H13B108.0
C5—C6—C1120.08 (13)C13—C14—C15111.74 (11)
C5—C6—H6A120.0C13—C14—H14A109.3
C1—C6—H6A120.0C15—C14—H14A109.3
O1—C7—N1122.67 (11)C13—C14—H14B109.3
O1—C7—C1122.54 (11)C15—C14—H14B109.3
N1—C7—C1114.77 (10)H14A—C14—H14B107.9
N2—C8—N1116.41 (11)C16—C15—C14113.39 (11)
N2—C8—S1124.81 (10)C16—C15—H15A108.9
N1—C8—S1118.73 (9)C14—C15—H15A108.9
N2—C9—C10110.64 (10)C16—C15—H15B108.9
N2—C9—H9A109.5C14—C15—H15B108.9
C10—C9—H9A109.5H15A—C15—H15B107.7
N2—C9—H9B109.5C15—C16—H16A109.5
C10—C9—H9B109.5C15—C16—H16B109.5
H9A—C9—H9B108.1H16A—C16—H16B109.5
C9—C10—C11112.19 (11)C15—C16—H16C109.5
C9—C10—H10A109.2H16A—C16—H16C109.5
C11—C10—H10A109.2H16B—C16—H16C109.5
C6—C1—C2—C31.20 (19)C9—N2—C8—N1172.80 (10)
C7—C1—C2—C3177.48 (11)C13—N2—C8—N19.26 (17)
C1—C2—C3—C41.2 (2)C9—N2—C8—S19.85 (17)
C2—C3—C4—C50.4 (2)C13—N2—C8—S1168.09 (9)
C3—C4—C5—C60.4 (2)C7—N1—C8—N262.67 (15)
C4—C5—C6—C10.3 (2)C7—N1—C8—S1119.81 (11)
C2—C1—C6—C50.46 (19)C8—N2—C9—C1093.34 (14)
C7—C1—C6—C5176.57 (12)C13—N2—C9—C1088.52 (13)
C8—N1—C7—O12.17 (18)N2—C9—C10—C11173.07 (11)
C8—N1—C7—C1179.45 (11)C9—C10—C11—C12176.53 (12)
C6—C1—C7—O1151.14 (12)C8—N2—C13—C1482.29 (15)
C2—C1—C7—O125.06 (17)C9—N2—C13—C1495.77 (12)
C6—C1—C7—N127.25 (16)N2—C13—C14—C15173.16 (10)
C2—C1—C7—N1156.56 (11)C13—C14—C15—C1659.57 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.85 (1)2.64 (1)3.4547 (11)160 (1)
C2—H2a···O1ii0.952.473.4102 (16)173
C14—H14b···O1iii0.992.583.3559 (16)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H24N2OS
Mr292.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.3213 (7), 15.7043 (11), 10.0992 (7)
β (°) 98.751 (1)
V3)1617.91 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.40 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.925, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
15120, 3725, 3204
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.03
No. of reflections3725
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.854 (9)2.638 (10)3.4547 (11)160.4 (14)
C2—H2a···O1ii0.952.473.4102 (16)173
C14—H14b···O1iii0.992.583.3559 (16)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NG thanks the NITT for a Fellowship. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationBinzet, G., Kulcu, N., Florke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454–3462.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun. 13, 952–955.  Web of Science CrossRef CAS Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2572-o2573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHallale, O., Bourne, S. A. & Koch, K. R. (2005). CrystEngComm, 7, 161–166.  Web of Science CSD CrossRef CAS Google Scholar
First citationHenderson, W., Nicholson, B. K., Dinger, B. M. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationLipowska, M., Hayes, B. L., Hansen, L., Taylor, A. Jr & Marzilli, L. G. (1996). Inorg. Chem. 35, 4227–4231.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds