metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cobalt(II) 4,4′-(1,2-dihy­dr­oxy­ethane-1,2-di­yl)dibenzoate monohydrate

aEnergy Engineering College, Xiangtan University, 411100 Xiangtan, People's Republic of China, and bState Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou 221008, People's Republic of China
*Correspondence e-mail: madancumt@gmail.com

(Received 4 September 2010; accepted 18 September 2010; online 30 September 2010)

The title compound, [Co(H2O)6](C16H12O6)·H2O, is composed of one 4,4′-(1,2-dihy­droxy­ethane-1,2-di­yl)dibenzoate anion lying on an inversion center, one [Co(H2O)6]2+ dicationic complex and a solvent water mol­ecule located on mirror planes. In the crystal, a chain is constructed via O—H⋯O hydrogen bonds involving the carboxyl­ate and hydroxyl groups of the organic anion; the chains are further connected into a three-dimensional framework by additional O—H⋯O hydrogen bonds between the [Co(H2O)6]2+ cations, solvent water mol­ecules and the anions.

Related literature

For background to metal-organic structures and their potential applications as functional materials, see: Liang et al. (2000[Liang, Y. C., Cao, R., Su, W. P., Hong, M. C. & Zhang, W. J. (2000). Angew. Chem. Int. Ed. 39, 3304-3307.]); Kondo et al. (2004[Kondo, M., Irie, Y., Shimizu, Y., Miyazawa, M., Kawaguchi, H., Nakamura, A., Naito, T., Maeda, K. & Uchida, F. (2004). Inorg. Chem. 43, 6139-6141.]); Lin et al. (2004[Lin, P., Henderson, R. A., Harrington, R. W., Clegg, W., Wu, C. D. & Wu, X. T. (2004). Inorg. Chem. 43, 181-188.]); Fan & Hanson (2005[Fan, J. & Hanson, B. E. (2005). Inorg. Chem. 44, 6998-7008.]); Laborda et al. (2004[Laborda, S., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Inorg. Chem. 43, 5931-5943.]); Fei et al. (2005[Fei, B. L., Clerac, R., Anson, C. E. & Powell, A. K. (2005). Dalton Trans. pp. 1381-1386.]); Zhang et al. (2006[Zhang, Z. J., Xiang, S. C., Zhang, Y. F., Wu, A. Q., Cai, L. Z., Guo, G. C. & Huang, J. S. (2006). Inorg. Chem. 45, 1972-1977.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6](C16H12O6)·H2O

  • Mr = 485.30

  • Monoclinic, P 21 /m

  • a = 6.0430 (6) Å

  • b = 20.487 (2) Å

  • c = 8.6341 (9) Å

  • β = 104.115 (1)°

  • V = 1036.66 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 298 K

  • 0.38 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]) Tmin = 0.728, Tmax = 0.856

  • 5184 measured reflections

  • 1867 independent reflections

  • 1675 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.177

  • S = 1.25

  • 1867 reflections

  • 144 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 2.00 2.811 (8) 168
O1W—H1W⋯O1ii 0.85 1.96 2.814 (9) 180
O1W—H2W⋯O2iii 0.85 1.81 2.665 (8) 179
O2W—H3W⋯O3iv 0.85 2.00 2.847 (8) 180
O2W—H4W⋯O5Wv 0.85 2.19 3.035 (11) 179
O3W—H5W⋯O4Wvi 0.85 1.93 2.778 (11) 172
O3W—H6W⋯O5W 0.85 1.91 2.756 (13) 171
O5W—H9W⋯O2 0.85 1.93 2.767 (10) 169
O4W—H7W⋯O1vii 0.84 1.88 2.695 (7) 163
O4W—H7W⋯O2vii 0.84 2.70 3.296 (9) 130
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) -x+2, -y, -z+1; (v) x+1, y, z; (vi) x-1, y, z; (vii) [x+1, -y+{\script{1\over 2}}, z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic coordination polymers have been greatly developed in recent years due to their captivating structure (Kondo et al., 2004; Fan et al., 2005) and potential applications as functional materials in electronic (Lin et al., 2004), magnetic (Laborda et al., 2004; Liang et al., 2000; Fei et al., 2005) and optical (Zhang et al., 2006) fields. Thus, we choose the ligand 4,4'- (1,2-dihydroxyethane-1,2-diyl)dibenzoate and Co(NO3)2 under hydrothermal conditions to obtain new metal-organic complex, We report here the synthesis and structure of the title compound.

As shown in Figure 1, the title compound [Co(H2O)6][C16H12O6].H2O is composed of one 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate anion lying on inversion center, one [Co6H2O]2+ dicationic complex and a solvent water molecule locating on mirror planes. The CoII ion is coordinated by six water molecules in an octahedral geometry. The hydroxyl groups of the 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate anion are oriented such the the H atoms are directed away from the plane of the benzene ring. In the crystal, a one-dimensional chain is constructed via O—H···O hydrogen bonds interactions involving the carboxylate and hydroxyl groups of the organic anion, which was further connected into a three-dimensional framework by additional O—H···O hydrogen bonds formed by [Co(H2O)6]2+ cations, solvent water molecules and the anions.

Related literature top

For background to metal-organic structures and their potential applications as functional materials, see: Liang et al. (2000); Kondo et al. (2004); Lin et al. (2004); Fan et al. (2005); Laborda et al. (2004); Fei et al. (2005); Zhang et al. (2006).

Experimental top

A mixture of 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate(0.5 mol, 0.15 g) and Co(NO3)2 (0.5 mol, 0.14 g) in 30 ml of absolute ethanol was heated under reflux for 6 h in the presence of 1-2 drops of NaOH. The reaction mixture was cooled to room temperature for 2 h. The light-red crystal was filtered off and washed several times using absolute ethanol.

Refinement top

H atoms bound to C atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.93 Å(aromatic) and 0.98 Å(CH) and with Uiso(H) = 1.2 Ueq(C) H atoms of hydroxyl group and water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.5 Ueq(O) for water O atoms and 1.2 Ueq(O) for hydroxyl O atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound, with the atom-numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids (H atoms are omitted for clarity). [Symmetry codes: (i) 2-x, -y, 1-z; (ii) x, 0.5-y, z.]
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound down the a axis (H atoms is not shown in the picture for clarity).
Hexaaquacobalt(II) 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate monohydrate top
Crystal data top
[Co(H2O)6](C16H12O6)·H2OF(000) = 506
Mr = 485.30Dx = 1.555 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2215 reflections
a = 6.0430 (6) Åθ = 2.5–24.0°
b = 20.487 (2) ŵ = 0.89 mm1
c = 8.6341 (9) ÅT = 298 K
β = 104.115 (1)°Block, red
V = 1036.66 (18) Å30.38 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1867 independent reflections
Radiation source: fine-focus sealed tube1675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 67
Tmin = 0.728, Tmax = 0.856k = 2424
5184 measured reflectionsl = 810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.P)2 + 7.8675P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
1867 reflectionsΔρmax = 0.58 e Å3
144 parametersΔρmin = 0.46 e Å3
11 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (18)
Crystal data top
[Co(H2O)6](C16H12O6)·H2OV = 1036.66 (18) Å3
Mr = 485.30Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.0430 (6) ŵ = 0.89 mm1
b = 20.487 (2) ÅT = 298 K
c = 8.6341 (9) Å0.38 × 0.20 × 0.18 mm
β = 104.115 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1867 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1675 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.856Rint = 0.039
5184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07511 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.25Δρmax = 0.58 e Å3
1867 reflectionsΔρmin = 0.46 e Å3
144 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.8509 (2)0.25000.54019 (15)0.0234 (4)
O10.4205 (10)0.1418 (3)0.2097 (7)0.0505 (16)
O20.1731 (10)0.1522 (3)0.0588 (8)0.0616 (19)
O30.8284 (10)0.0725 (3)0.4766 (7)0.0536 (17)
H30.77340.09590.39990.080*
O1W0.8192 (10)0.1750 (3)0.6947 (7)0.062 (2)
H1W0.69840.16510.72320.093*
H2W0.93300.16780.77270.093*
O2W0.9112 (10)0.1813 (3)0.3752 (7)0.0540 (16)
H3W0.98920.14890.41980.081*
H4W0.98480.20020.31580.081*
O3W0.5046 (14)0.25000.4420 (9)0.061 (3)
H5W0.42690.25000.51180.091*
H6W0.41250.25000.35020.091*
O4W1.2136 (12)0.25000.6463 (9)0.0351 (17)
H7W1.25220.28750.68250.053*
O5W0.1686 (19)0.25000.1613 (12)0.099 (4)
H9W0.16900.21640.10360.148*
C10.3585 (14)0.1323 (4)0.0814 (10)0.044 (2)
C20.5138 (13)0.0948 (4)0.0530 (10)0.041 (2)
C30.7192 (14)0.0687 (4)0.0317 (10)0.045 (2)
H3A0.76320.07620.06270.054*
C40.8566 (15)0.0316 (4)0.1527 (10)0.047 (2)
H40.99210.01420.13800.056*
C50.7956 (14)0.0202 (4)0.2936 (10)0.043 (2)
C60.5928 (15)0.0463 (4)0.3163 (10)0.048 (2)
H60.55080.03930.41170.058*
C70.4528 (14)0.0831 (4)0.1944 (10)0.047 (2)
H7A0.31630.09990.20890.056*
C80.9495 (15)0.0203 (4)0.4267 (10)0.046 (2)
H8A1.07450.03860.38630.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0209 (7)0.0289 (7)0.0194 (7)0.0000.0032 (5)0.000
O10.041 (3)0.049 (4)0.053 (4)0.002 (3)0.005 (3)0.010 (3)
O20.039 (4)0.075 (5)0.062 (4)0.016 (3)0.005 (3)0.024 (4)
O30.058 (4)0.037 (3)0.054 (4)0.004 (3)0.010 (3)0.004 (3)
O1W0.035 (3)0.086 (5)0.058 (4)0.008 (3)0.002 (3)0.033 (4)
O2W0.056 (4)0.053 (4)0.050 (4)0.000 (3)0.006 (3)0.010 (3)
O3W0.037 (5)0.118 (8)0.024 (4)0.0000.001 (4)0.000
O4W0.033 (4)0.031 (4)0.039 (4)0.0000.006 (3)0.000
O5W0.068 (7)0.184 (14)0.046 (6)0.0000.017 (5)0.000
C10.039 (5)0.038 (5)0.047 (5)0.006 (4)0.009 (4)0.008 (4)
C20.036 (4)0.030 (4)0.045 (5)0.001 (3)0.011 (4)0.004 (4)
C30.045 (5)0.039 (5)0.044 (5)0.001 (4)0.003 (4)0.007 (4)
C40.042 (5)0.041 (5)0.047 (5)0.011 (4)0.008 (4)0.004 (4)
C50.040 (5)0.029 (4)0.047 (5)0.001 (3)0.014 (4)0.002 (4)
C60.044 (5)0.050 (5)0.041 (5)0.001 (4)0.007 (4)0.008 (4)
C70.034 (4)0.045 (5)0.054 (5)0.002 (4)0.003 (4)0.009 (4)
C80.044 (5)0.032 (4)0.048 (5)0.000 (4)0.013 (4)0.006 (4)
Geometric parameters (Å, º) top
Co1—O3W2.058 (8)O4W—H7W0.8413
Co1—O1Wi2.074 (6)O5W—H9W0.8500
Co1—O1W2.074 (6)C1—C21.511 (10)
Co1—O2W2.097 (6)C2—C71.380 (12)
Co1—O2Wi2.097 (6)C2—C31.404 (12)
Co1—O4W2.159 (7)C3—C41.392 (11)
O1—C11.268 (10)C3—H3A0.9300
O2—C11.251 (11)C4—C51.374 (12)
O3—C81.420 (10)C4—H40.9300
O3—H30.8200C5—C61.394 (12)
O1W—H1W0.8500C5—C81.534 (10)
O1W—H2W0.8500C6—C71.399 (11)
O2W—H3W0.8500C6—H60.9300
O2W—H4W0.8500C7—H7A0.9300
O3W—H5W0.8501C8—C8ii1.513 (16)
O3W—H6W0.8500C8—H8A0.9800
O3W—Co1—O1Wi91.2 (2)O2—C1—C2117.2 (8)
O3W—Co1—O1W91.2 (2)O1—C1—C2119.3 (8)
O1Wi—Co1—O1W95.6 (4)C7—C2—C3119.0 (7)
O3W—Co1—O2W92.7 (2)C7—C2—C1121.2 (8)
O1Wi—Co1—O2W173.2 (3)C3—C2—C1119.7 (8)
O1W—Co1—O2W89.9 (3)C4—C3—C2119.6 (8)
O3W—Co1—O2Wi92.7 (2)C4—C3—H3A120.2
O1Wi—Co1—O2Wi89.9 (3)C2—C3—H3A120.2
O1W—Co1—O2Wi173.2 (3)C5—C4—C3121.2 (8)
O2W—Co1—O2Wi84.3 (4)C5—C4—H4119.4
O3W—Co1—O4W179.3 (3)C3—C4—H4119.4
O1Wi—Co1—O4W88.3 (2)C4—C5—C6119.6 (7)
O1W—Co1—O4W88.3 (2)C4—C5—C8120.7 (8)
O2W—Co1—O4W87.8 (2)C6—C5—C8119.7 (8)
O2Wi—Co1—O4W87.8 (2)C5—C6—C7119.5 (8)
C8—O3—H3109.5C5—C6—H6120.3
Co1—O1W—H1W125.7C7—C6—H6120.3
Co1—O1W—H2W117.0C2—C7—C6121.1 (8)
H1W—O1W—H2W108.4C2—C7—H7A119.4
Co1—O2W—H3W112.7C6—C7—H7A119.4
Co1—O2W—H4W107.9O3—C8—C8ii107.0 (9)
H3W—O2W—H4W108.4O3—C8—C5111.8 (7)
Co1—O3W—H5W112.9C8ii—C8—C5112.1 (8)
Co1—O3W—H6W138.9O3—C8—H8A108.6
H5W—O3W—H6W108.2C8ii—C8—H8A108.6
Co1—O4W—H7W108.6C5—C8—H8A108.6
O2—C1—O1123.5 (8)
O2—C1—C2—C70.1 (12)C4—C5—C6—C70.7 (12)
O1—C1—C2—C7179.7 (8)C8—C5—C6—C7179.9 (7)
O2—C1—C2—C3177.1 (8)C3—C2—C7—C60.6 (13)
O1—C1—C2—C32.8 (12)C1—C2—C7—C6177.5 (7)
C7—C2—C3—C40.1 (12)C5—C6—C7—C21.0 (13)
C1—C2—C3—C4176.9 (7)C4—C5—C8—O3126.6 (9)
C2—C3—C4—C50.4 (13)C6—C5—C8—O354.0 (10)
C3—C4—C5—C60.0 (13)C4—C5—C8—C8ii113.3 (11)
C3—C4—C5—C8179.4 (7)C6—C5—C8—C8ii66.1 (12)
Symmetry codes: (i) x, y+1/2, z; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1iii0.822.002.811 (8)168
O1W—H1W···O1iv0.851.962.814 (9)180
O1W—H2W···O2v0.851.812.665 (8)179
O2W—H3W···O3ii0.852.002.847 (8)180
O2W—H4W···O5Wvi0.852.193.035 (11)179
O3W—H5W···O4Wvii0.851.932.778 (11)172
O3W—H6W···O5W0.851.912.756 (13)171
O5W—H9W···O20.851.932.767 (10)169
O4W—H7W···O1viii0.841.882.695 (7)163
O4W—H7W···O2viii0.842.703.296 (9)130
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x1, y, z; (viii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6](C16H12O6)·H2O
Mr485.30
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)6.0430 (6), 20.487 (2), 8.6341 (9)
β (°) 104.115 (1)
V3)1036.66 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.38 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.728, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
5184, 1867, 1675
Rint0.039
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.177, 1.25
No. of reflections1867
No. of parameters144
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.46

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.002.811 (8)167.9
O1W—H1W···O1ii0.851.962.814 (9)179.6
O1W—H2W···O2iii0.851.812.665 (8)179.1
O2W—H3W···O3iv0.852.002.847 (8)179.7
O2W—H4W···O5Wv0.852.193.035 (11)178.9
O3W—H5W···O4Wvi0.851.932.778 (11)172.1
O3W—H6W···O5W0.851.912.756 (13)171.1
O5W—H9W···O20.851.932.767 (10)169.0
O4W—H7W···O1vii0.841.882.695 (7)162.7
O4W—H7W···O2vii0.842.703.296 (9)129.6
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x+1, y, z; (vi) x1, y, z; (vii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge Xiangtan University for supporting this work.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationFan, J. & Hanson, B. E. (2005). Inorg. Chem. 44, 6998–7008.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFei, B. L., Clerac, R., Anson, C. E. & Powell, A. K. (2005). Dalton Trans. pp. 1381–1386.  Web of Science CSD CrossRef Google Scholar
First citationKondo, M., Irie, Y., Shimizu, Y., Miyazawa, M., Kawaguchi, H., Nakamura, A., Naito, T., Maeda, K. & Uchida, F. (2004). Inorg. Chem. 43, 6139–6141.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLaborda, S., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Inorg. Chem. 43, 5931–5943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, Y. C., Cao, R., Su, W. P., Hong, M. C. & Zhang, W. J. (2000). Angew. Chem. Int. Ed. 39, 3304–3307.  Web of Science CrossRef CAS Google Scholar
First citationLin, P., Henderson, R. A., Harrington, R. W., Clegg, W., Wu, C. D. & Wu, X. T. (2004). Inorg. Chem. 43, 181–188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. J., Xiang, S. C., Zhang, Y. F., Wu, A. Q., Cai, L. Z., Guo, G. C. & Huang, J. S. (2006). Inorg. Chem. 45, 1972–1977.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds