organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­acetic acid–(E,E)-4,4'-(hydra­zinediyl­idene)di­pyridine (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 15 September 2010; accepted 21 September 2010; online 25 September 2010)

The asymmetric unit of the title co-crystal, C12H10N4·2C8H8O2, comprises a single mol­ecule of 2-phenyl­acetic acid and half a mol­ecule of 4-pyridine­aldazine as this is situated about a centre of inversion. Mol­ecules are connected into a three component aggregate via O—H⋯N hydrogen bonds. As the carb­oxy­lic acid group is almost normal to the plane through the benzene ring to which it is attached [C—C—C—C = 93.7 (3) °], and the 4-pyridine­aldazine mol­ecule is planar (r.m.s. deviation of the 16 non-H atoms = 0.010 Å), the overall shape of the aggregate is that of an extended chair. In the crystal packing, layers of three component aggregates stack along the c axis.

Related literature

For related studies on co-crystal formation involving the isomeric n-pyridine­aldazines, see: Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2356.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4·2C8H8O2

  • Mr = 482.53

  • Monoclinic, P 21 /c

  • a = 11.677 (7) Å

  • b = 4.425 (2) Å

  • c = 23.587 (13) Å

  • β = 95.475 (8)°

  • V = 1213.2 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.40 × 0.16 × 0.05 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 5399 measured reflections

  • 2117 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.152

  • S = 1.14

  • 2117 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.96 (4) 1.70 (4) 2.653 (3) 175 (3)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of studies into the phenomenon of co-crystallization of the isomeric n-pyridinealdazines (Broker et al., 2008; Arman et al., 2010), the co-crystallization of 2-phenylacetic acid and 4-pyridinealdazine was investigated. This lead to the isolation of the title 2/1 co-crystal.

The asymmetric unit comprises a molecule of 2-phenylacetic acid and half a molecule of 4-pyridinealdazine, with the latter disposed about a centre of inversion. The constituents are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate, Fig. 1. The 2-phenylacetic acid molecule is non-planar as seen in the value of the C12–C7–C13—C14 torsion angle of 93.7 (3) °. By contrast, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms being 0.010 Å. Hence, the three component aggregate has the shape of an extended chair, Fig. 1.

In the crystal packing, the three component aggregates pack into layers that stack along the c axis, Fig. 2. There are no specific additional intermolecular interactions of note.

Related literature top

For related studies on co-crystal formation involving the isomeric n-pyridinealdazines, see: Broker et al. (2008); Arman et al. (2010).

Experimental top

Yellow crystals of (I) were isolated from the 2/1 co-crystallization of 2-phenylacetic acid (Sigma Aldrich) and 4-[(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1- ylidene]methyl]pyridine (Sigma Aldrich) in ethanol, m.p. 395–397 K. IR assignment (cm-1): 2923 (ν C—H); 2428 (ν O—H); 1693 (ν CO); 1602 (ν CN); 1492,1453, 1409 (ν C–C (aromatic)); 1306 (ν C—N); 817, 716 (δ C—H).

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The three component aggregate in the 2:1 co-crystal formed between 2-phenylacetic acid and 4-pyridinealdazine showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. Unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, -z. The view highlights the extended chair conformation and the O—H···N hydrogen bonds (shown as orange dashed lines).
[Figure 2] Fig. 2. A view in projection down the a axis showing the stacking of layers of three component aggregates along c. The O—H···N hydrogen bonds are shown as orange dashed lines.
2-Phenylacetic acid–(E,E)-4,4'-(hydrazinediylidene)dipyridine (2/1) top
Crystal data top
C12H10N4·2C8H8O2F(000) = 508
Mr = 482.53Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4281 reflections
a = 11.677 (7) Åθ = 2.4–40.2°
b = 4.425 (2) ŵ = 0.09 mm1
c = 23.587 (13) ÅT = 98 K
β = 95.475 (8)°Plate, yellow
V = 1213.2 (11) Å30.40 × 0.16 × 0.05 mm
Z = 2
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1735 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ω scansh = 1313
5399 measured reflectionsk = 54
2117 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.7865P]
where P = (Fo2 + 2Fc2)/3
2117 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H10N4·2C8H8O2V = 1213.2 (11) Å3
Mr = 482.53Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.677 (7) ŵ = 0.09 mm1
b = 4.425 (2) ÅT = 98 K
c = 23.587 (13) Å0.40 × 0.16 × 0.05 mm
β = 95.475 (8)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1735 reflections with I > 2σ(I)
5399 measured reflectionsRint = 0.056
2117 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.18 e Å3
2117 reflectionsΔρmin = 0.21 e Å3
166 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18146 (19)1.2809 (5)0.09616 (10)0.0316 (6)
N20.4766 (2)0.6025 (5)0.01894 (9)0.0310 (5)
C10.1394 (3)1.1780 (6)0.04489 (13)0.0361 (7)
H10.06511.24240.02980.043*
C20.2001 (2)0.9811 (6)0.01301 (12)0.0321 (6)
H20.16680.90830.02270.038*
C30.3098 (2)0.8921 (6)0.03387 (11)0.0269 (6)
C40.3540 (2)1.0017 (6)0.08676 (12)0.0303 (6)
H40.42900.94570.10240.036*
C50.2874 (2)1.1929 (6)0.11616 (12)0.0305 (6)
H50.31831.26570.15230.037*
C60.3752 (2)0.6842 (6)0.00068 (11)0.0291 (6)
H60.34140.60980.03480.035*
O10.05896 (17)1.6320 (5)0.15872 (9)0.0411 (6)
H1o0.099 (3)1.503 (8)0.1346 (15)0.062*
O20.07727 (18)1.5893 (5)0.08618 (9)0.0463 (6)
C70.2197 (2)1.6934 (6)0.18430 (11)0.0291 (6)
C80.3183 (2)1.6647 (6)0.14658 (11)0.0301 (6)
H80.32351.77090.11140.036*
C90.4091 (2)1.4834 (6)0.15960 (12)0.0345 (7)
H90.47551.46510.13330.041*
C100.4032 (3)1.3282 (6)0.21105 (13)0.0393 (7)
H100.46531.20430.22010.047*
C110.3063 (3)1.3562 (6)0.24861 (13)0.0417 (8)
H110.30171.25020.28380.050*
C120.2149 (3)1.5378 (6)0.23580 (12)0.0368 (7)
H120.14881.55570.26240.044*
C130.1189 (2)1.8779 (6)0.16826 (13)0.0358 (7)
H13A0.07271.94830.20320.043*
H13B0.14712.05760.14620.043*
C140.0443 (2)1.6869 (6)0.13282 (12)0.0325 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0300 (13)0.0327 (12)0.0328 (13)0.0018 (10)0.0066 (11)0.0014 (10)
N20.0320 (13)0.0324 (12)0.0296 (13)0.0028 (10)0.0081 (10)0.0008 (10)
C10.0324 (16)0.0392 (15)0.0366 (17)0.0032 (13)0.0027 (13)0.0021 (13)
C20.0295 (15)0.0381 (15)0.0284 (15)0.0013 (12)0.0017 (12)0.0028 (12)
C30.0288 (14)0.0262 (13)0.0265 (14)0.0012 (11)0.0071 (12)0.0009 (11)
C40.0300 (15)0.0309 (14)0.0303 (15)0.0026 (11)0.0037 (12)0.0007 (12)
C50.0323 (16)0.0342 (14)0.0258 (14)0.0001 (12)0.0061 (12)0.0016 (12)
C60.0334 (16)0.0290 (13)0.0252 (14)0.0010 (12)0.0046 (12)0.0013 (11)
O10.0295 (11)0.0523 (13)0.0409 (12)0.0074 (9)0.0006 (9)0.0177 (10)
O20.0408 (13)0.0626 (14)0.0345 (12)0.0149 (11)0.0011 (10)0.0111 (11)
C70.0319 (15)0.0282 (13)0.0279 (14)0.0070 (11)0.0066 (12)0.0058 (11)
C80.0347 (16)0.0308 (14)0.0251 (14)0.0036 (12)0.0038 (12)0.0017 (11)
C90.0326 (16)0.0350 (14)0.0363 (17)0.0025 (12)0.0054 (13)0.0028 (13)
C100.0455 (19)0.0337 (15)0.0418 (18)0.0001 (13)0.0197 (15)0.0055 (13)
C110.062 (2)0.0369 (16)0.0276 (16)0.0122 (15)0.0146 (15)0.0034 (13)
C120.0443 (18)0.0388 (15)0.0265 (15)0.0119 (13)0.0004 (13)0.0066 (12)
C130.0316 (16)0.0351 (15)0.0413 (18)0.0018 (12)0.0071 (13)0.0111 (13)
C140.0330 (16)0.0330 (14)0.0318 (16)0.0003 (12)0.0054 (13)0.0003 (12)
Geometric parameters (Å, º) top
N1—C51.339 (3)O2—C141.210 (3)
N1—C11.341 (4)C7—C81.392 (4)
N2—C61.273 (3)C7—C121.393 (4)
N2—N2i1.419 (4)C7—C131.510 (4)
C1—C21.389 (4)C8—C91.387 (4)
C1—H10.9500C8—H80.9500
C2—C31.385 (4)C9—C101.390 (4)
C2—H20.9500C9—H90.9500
C3—C41.391 (4)C10—C111.374 (4)
C3—C61.468 (4)C10—H100.9500
C4—C51.380 (4)C11—C121.392 (4)
C4—H40.9500C11—H110.9500
C5—H50.9500C12—H120.9500
C6—H60.9500C13—C141.520 (4)
O1—C141.321 (3)C13—H13A0.9900
O1—H1o0.96 (4)C13—H13B0.9900
C5—N1—C1117.7 (2)C9—C8—C7120.9 (3)
C6—N2—N2i111.7 (3)C9—C8—H8119.5
N1—C1—C2122.6 (3)C7—C8—H8119.5
N1—C1—H1118.7C8—C9—C10120.3 (3)
C2—C1—H1118.7C8—C9—H9119.9
C3—C2—C1119.3 (3)C10—C9—H9119.9
C3—C2—H2120.4C11—C10—C9119.2 (3)
C1—C2—H2120.4C11—C10—H10120.4
C2—C3—C4118.1 (2)C9—C10—H10120.4
C2—C3—C6119.9 (2)C10—C11—C12120.9 (3)
C4—C3—C6122.0 (2)C10—C11—H11119.6
C5—C4—C3119.1 (3)C12—C11—H11119.6
C5—C4—H4120.5C11—C12—C7120.4 (3)
C3—C4—H4120.5C11—C12—H12119.8
N1—C5—C4123.2 (3)C7—C12—H12119.8
N1—C5—H5118.4C7—C13—C14109.8 (2)
C4—C5—H5118.4C7—C13—H13A109.7
N2—C6—C3120.8 (2)C14—C13—H13A109.7
N2—C6—H6119.6C7—C13—H13B109.7
C3—C6—H6119.6C14—C13—H13B109.7
C14—O1—H1O108 (2)H13A—C13—H13B108.2
C8—C7—C12118.3 (3)O2—C14—O1123.5 (3)
C8—C7—C13120.4 (3)O2—C14—C13123.3 (3)
C12—C7—C13121.2 (3)O1—C14—C13113.2 (2)
C5—N1—C1—C21.5 (4)C13—C7—C8—C9176.6 (2)
N1—C1—C2—C31.8 (4)C7—C8—C9—C100.5 (4)
C1—C2—C3—C40.9 (4)C8—C9—C10—C110.2 (4)
C1—C2—C3—C6180.0 (2)C9—C10—C11—C120.2 (4)
C2—C3—C4—C50.1 (4)C10—C11—C12—C70.4 (4)
C6—C3—C4—C5179.0 (2)C8—C7—C12—C110.6 (4)
C1—N1—C5—C40.4 (4)C13—C7—C12—C11176.6 (2)
C3—C4—C5—N10.3 (4)C8—C7—C13—C1483.5 (3)
N2i—N2—C6—C3178.9 (2)C12—C7—C13—C1493.7 (3)
C2—C3—C6—N2179.3 (2)C7—C13—C14—O264.5 (4)
C4—C3—C6—N21.7 (4)C7—C13—C14—O1113.9 (3)
C12—C7—C8—C90.7 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.96 (4)1.70 (4)2.653 (3)175 (3)

Experimental details

Crystal data
Chemical formulaC12H10N4·2C8H8O2
Mr482.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)11.677 (7), 4.425 (2), 23.587 (13)
β (°) 95.475 (8)
V3)1213.2 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.16 × 0.05
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5399, 2117, 1735
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.152, 1.14
No. of reflections2117
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.96 (4)1.70 (4)2.653 (3)175 (3)
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds