metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetato­(N-[(E)-1-(6-methyl-2-pyrid­yl)methyl­­idene]-2-{2-[(E)-1-(6-methyl-2-pyrid­yl)methyl­­idene­amino]­pheneth­yl}aniline)nickel(II) perchlorate

aDepartment of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea, and bKorea Basic Science Institute, 664-14 Dukjin dong 1-ga, Dukjin-gu, Jeonju, 561-756, Republic of Korea
*Correspondence e-mail: leehi@knu.ac.kr

(Received 17 August 2010; accepted 26 August 2010; online 4 September 2010)

In the title complex, [Ni(CH3COO)(C28H26N4)]ClO4, the NiII atom is coordinated by two imine N atoms and two pyridine N atoms of the N-[(E)-1-(6-methyl-2-pyrid­yl)methyl­idene]-2-(2-[(E)-1-(6-methyl-2-pyrid­yl)methyl­idene­amino]­pheneth­yl)aniline donor ligand and two O atoms of the acetate ion in a distorted octa­hedral coordination. The average Ni—N and Ni—O bond lengths are 2.131 (13) and 2.098 (11) Å, respectively. An intramolecular N—H⋯O inter­action occurs. Relatively weak inter­molecular C—H⋯O inter­actions between the ligands and the ClO4 ions result in a chain extending along the b axis.

Related literature

For structures of Ni complexes with ligands formed by the condensation of 2-pyridyl aldehydes and a variety of diamines, see: Banerjee et al. (2004[Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533-2541.]). For comparison Ni—N bond distances, see: Martin et al. (1977[Martin, L. Y., Sperati, C. R. & Busch, D. H. (1977). J. Am. Chem. Soc. 99, 2968-2981.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H3O2)(C28H26N4)]ClO4

  • Mr = 635.73

  • Triclinic, [P \overline 1]

  • a = 8.5759 (8) Å

  • b = 11.4975 (10) Å

  • c = 14.8322 (13) Å

  • α = 79.392 (2)°

  • β = 78.102 (2)°

  • γ = 81.327 (2)°

  • V = 1396.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 200 K

  • 0.23 × 0.11 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • 10545 measured reflections

  • 6856 independent reflections

  • 3311 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.149

  • S = 1.05

  • 6856 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.45 3.274 (6) 144
C7—H7⋯O4ii 0.95 2.41 3.290 (7) 155
C20—H20⋯O3iii 0.95 2.43 3.366 (8) 168
C15—H15B⋯O2 0.99 2.54 3.523 (7) 174
C15—H15B⋯N3 0.99 2.47 2.935 (7) 108
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of Schiff-base ligands formed by the condensation of 2-pyridyl aldehydes with a variety of diamines has been reported recently. These ligands bind tetradentately to metal ions to form a planar arrangement around the metals (Banerjee et al., 2004). We are quite interested in the synthesis of this type of Schiff-base tetraamine nickel(II) complexes and have obtained a novel nickel(II) compound with an acetate group. In this paper, we report the synthesis and crystal structure of the title complex.

The title complex consists of [Ni(mpma)(η2-CH3CO2)]+ (mpma = N1-[(E)-1-(6-methyl-2-pyridyl)-methylidene]-2-(2-[(E)-1-(6- methyl-2-pyridyl)methylidene]aminophene-thyl)aniline) cation and ClO-4 anion (Fig. 1) wherein the Nickel(II) ion is six-coordinated with four N atoms of mpma and two O atoms of the acetate group, giving a distorted octahedral geometry. The average Ni—N and Ni—O bond lengths are 2.131 (13) and 2.098 (11) Å, respectively. It is in good agreement with the general trend that the nickel(II)-nitrogen bonds are longer (or weaker) in the octahedral species than in square planar species (Ni—N = 1.88–1.91 Å) (Martin et al., 1977). The N1—Ni1—N2, N3—Ni1—N4, and O1—Ni1—O2 bond angles are 79.57 (16), 79.87 (18), and 63.16 (14)°, respectively. The deviation of these angles from the ideal octahedral geometry is due to the constraints of the five membered chelate rings (N1—Ni1—N2—C7—C6 and N3—Ni1—N4—N23—N22) and four membered chelate ring (O1—Ni1—O2—C29). The distortion is also reflected in the bond angles N2—Ni1—N4, O2—Ni1—N1, and O1—Ni1—N3, which are 171.81 (19), 164.65 (15), and 158.19 (15)°, respectively. Relatively weak, intermolecular, C—H···O distances are found between the ligand and ClO4- ion, forming an one-dimensional chain extended along the b-axis (Fig. 2 and Tab. 1).

Related literature top

For structures of Ni complexes with ligands formed by the condensation of 2-pyridyl aldehydes and a variety of diamines, see: Banerjee et al. (2004). For comparison Ni—N bond distances, see: Martin et al. (1977).

Experimental top

Nickel(II)acetate tetrahydrate (0.5 g, 2.0 mmol) dissolved in dry methanol (25 ml) was added dropwise to a methanol solution (10 ml) of mpma (0.84 g, 2.0 mmol) and stirred. A green color solution appeared. Then methanol solution (5 ml) of sodium perchlorate (0.25 g, 2.0 mmol) was added. After 1 h, a crystalline powder (1.15 g) was collected by filtration and dried in vacuum. The powder (ca. 0.7 g) was dissolved in dry methanol (5 ml) and then diethyl ether (5 ml) was added slowly into the methanol solution. Suitable crystals for X-ray analysis were obtained from the solution after one day.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene H-atoms and Uiso(H) = 1.5 (methyl) and 1.2 (the rest) × the Ueq of the parent C-atoms. A relatively large residual density on Ni ion is a ghost peak residing less than 1 Å from the ion. An absorption correction did not improve the refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound showing 33% probability displacement ellipsoids and the atom-numbering scheme; H atoms have been omitted for clarity.
[Figure 2] Fig. 2. One-dimensional chain of the title complex formed by intermolecular interactions (dotted lines); H atoms have been omitted except for those involved in the C—H···O interactions.
Acetato(N-[(E)-1-(6-methyl-2-pyridyl)methylidene]-2-{2- [(E)-1-(6-methyl-2-pyridyl)methylideneamino]phenethyl}aniline)nickel(II) perchlorate top
Crystal data top
[Ni(C2H3O2)(C28H26N4)]ClO4Z = 2
Mr = 635.73F(000) = 660
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5759 (8) ÅCell parameters from 2599 reflections
b = 11.4975 (10) Åθ = 2.4–26.0°
c = 14.8322 (13) ŵ = 0.84 mm1
α = 79.392 (2)°T = 200 K
β = 78.102 (2)°Block, yellow
γ = 81.327 (2)°0.23 × 0.11 × 0.10 mm
V = 1396.9 (2) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
3311 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 28.3°, θmin = 1.4°
ϕ & ω scansh = 911
10545 measured reflectionsk = 1515
6856 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + 2.2621P]
where P = (Fo2 + 2Fc2)/3
6856 reflections(Δ/σ)max < 0.001
382 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 1.84 e Å3
Crystal data top
[Ni(C2H3O2)(C28H26N4)]ClO4γ = 81.327 (2)°
Mr = 635.73V = 1396.9 (2) Å3
Triclinic, P1Z = 2
a = 8.5759 (8) ÅMo Kα radiation
b = 11.4975 (10) ŵ = 0.84 mm1
c = 14.8322 (13) ÅT = 200 K
α = 79.392 (2)°0.23 × 0.11 × 0.10 mm
β = 78.102 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3311 reflections with I > 2σ(I)
10545 measured reflectionsRint = 0.049
6856 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.05Δρmax = 1.04 e Å3
6856 reflectionsΔρmin = 1.84 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.81516 (9)0.76280 (6)0.72685 (5)0.02685 (19)
N11.0115 (5)0.8119 (4)0.6208 (3)0.0245 (10)
C11.1033 (7)0.7543 (5)0.5523 (4)0.0314 (14)
C21.0751 (7)0.6312 (5)0.5466 (4)0.0404 (16)
H2A1.07360.58150.60800.061*
H2B1.16140.59750.50100.061*
H2C0.97190.63380.52730.061*
C31.2207 (7)0.8104 (5)0.4861 (4)0.0382 (16)
H31.27970.76980.43720.046*
C41.2535 (7)0.9230 (5)0.4898 (4)0.0342 (15)
H41.33430.96020.44470.041*
C51.1637 (7)0.9801 (5)0.5622 (4)0.0351 (15)
H51.18241.05740.56810.042*
C61.0472 (7)0.9219 (5)0.6249 (4)0.0283 (13)
C70.9486 (7)0.9817 (5)0.7008 (4)0.0289 (13)
H70.95751.06270.70200.035*
N20.8519 (5)0.9256 (4)0.7645 (3)0.0264 (11)
C80.7531 (7)0.9948 (5)0.8311 (4)0.0294 (14)
C90.6261 (7)1.0765 (4)0.8044 (4)0.0329 (15)
H90.60291.08330.74360.039*
C100.5334 (7)1.1478 (5)0.8670 (4)0.0353 (15)
H100.44681.20290.84900.042*
C110.5679 (7)1.1381 (5)0.9551 (4)0.0373 (16)
H110.50571.18720.99760.045*
C120.6942 (7)1.0560 (5)0.9817 (4)0.0364 (15)
H120.71801.05021.04230.044*
C130.7850 (7)0.9829 (4)0.9209 (4)0.0275 (13)
C140.9193 (7)0.8913 (5)0.9504 (4)0.0347 (15)
H14A0.93910.90501.01090.042*
H14B1.01880.90240.90370.042*
C150.8821 (7)0.7607 (4)0.9605 (4)0.0290 (13)
H15A0.82970.73371.02540.035*
H15B0.80750.75670.91860.035*
C161.0336 (7)0.6814 (4)0.9361 (4)0.0252 (12)
C171.1568 (7)0.6698 (5)0.9882 (4)0.0308 (14)
H171.14020.71081.04010.037*
C181.2997 (7)0.6012 (5)0.9660 (4)0.0393 (15)
H181.38040.59541.00240.047*
C191.3277 (8)0.5402 (5)0.8913 (4)0.0418 (16)
H191.42740.49300.87590.050*
C201.2097 (7)0.5483 (5)0.8389 (4)0.0360 (15)
H201.22830.50620.78760.043*
C211.0633 (7)0.6177 (5)0.8609 (4)0.0272 (13)
N30.9426 (5)0.6226 (4)0.8063 (3)0.0253 (11)
C220.9007 (7)0.5194 (5)0.8015 (4)0.0308 (14)
H220.94670.44880.83540.037*
C230.7849 (7)0.5120 (4)0.7447 (4)0.0264 (13)
C240.7234 (7)0.4057 (5)0.7518 (4)0.0359 (15)
H240.75710.33670.79240.043*
C250.6106 (7)0.4033 (5)0.6974 (4)0.0387 (16)
H250.56070.33330.70320.046*
C260.5713 (7)0.5021 (5)0.6354 (4)0.0391 (16)
H260.49490.50080.59750.047*
C270.6460 (7)0.6062 (5)0.6284 (4)0.0296 (13)
C280.6155 (8)0.7094 (5)0.5526 (4)0.0491 (18)
H28A0.51500.75790.57380.074*
H28B0.60740.67900.49640.074*
H28C0.70430.75840.53840.074*
N40.7454 (5)0.6115 (4)0.6852 (3)0.0267 (11)
O10.6159 (5)0.8708 (3)0.6811 (3)0.0337 (10)
O20.5968 (4)0.7613 (3)0.8201 (2)0.0291 (9)
C290.5314 (7)0.8311 (5)0.7580 (4)0.0317 (14)
C300.3545 (7)0.8655 (5)0.7740 (4)0.0455 (17)
H30A0.33150.95220.77000.068*
H30B0.30630.82710.83610.068*
H30C0.30920.83970.72650.068*
Cl10.1830 (2)0.26066 (14)0.70157 (11)0.0417 (4)
O30.2297 (6)0.3780 (4)0.6741 (3)0.0703 (16)
O40.0681 (6)0.2487 (4)0.6474 (3)0.0619 (14)
O50.3214 (6)0.1768 (4)0.6830 (3)0.0754 (17)
O60.1128 (7)0.2433 (5)0.7980 (3)0.0837 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0292 (4)0.0244 (4)0.0265 (4)0.0057 (3)0.0023 (3)0.0036 (3)
N10.030 (3)0.019 (2)0.024 (2)0.006 (2)0.003 (2)0.0036 (19)
C10.044 (4)0.028 (3)0.020 (3)0.005 (3)0.001 (3)0.004 (3)
C20.045 (4)0.041 (4)0.033 (4)0.006 (3)0.005 (3)0.011 (3)
C30.042 (4)0.043 (4)0.026 (3)0.002 (3)0.000 (3)0.003 (3)
C40.036 (4)0.029 (3)0.033 (3)0.006 (3)0.002 (3)0.002 (3)
C50.035 (4)0.035 (3)0.032 (3)0.009 (3)0.007 (3)0.006 (3)
C60.028 (3)0.032 (3)0.027 (3)0.008 (3)0.005 (3)0.008 (3)
C70.031 (3)0.026 (3)0.032 (3)0.008 (3)0.004 (3)0.009 (3)
N20.034 (3)0.026 (2)0.020 (2)0.005 (2)0.000 (2)0.010 (2)
C80.036 (4)0.020 (3)0.030 (3)0.009 (3)0.000 (3)0.001 (3)
C90.042 (4)0.019 (3)0.035 (3)0.007 (3)0.001 (3)0.001 (3)
C100.033 (4)0.024 (3)0.044 (4)0.002 (3)0.000 (3)0.003 (3)
C110.039 (4)0.031 (3)0.038 (4)0.012 (3)0.011 (3)0.009 (3)
C120.036 (4)0.035 (3)0.038 (4)0.008 (3)0.004 (3)0.006 (3)
C130.025 (3)0.019 (3)0.036 (3)0.001 (2)0.001 (3)0.006 (3)
C140.039 (4)0.034 (3)0.031 (3)0.007 (3)0.004 (3)0.007 (3)
C150.034 (3)0.029 (3)0.025 (3)0.009 (3)0.001 (3)0.009 (3)
C160.029 (3)0.024 (3)0.023 (3)0.008 (2)0.004 (2)0.001 (2)
C170.029 (3)0.032 (3)0.032 (3)0.004 (3)0.010 (3)0.005 (3)
C180.039 (4)0.040 (4)0.042 (4)0.000 (3)0.019 (3)0.005 (3)
C190.036 (4)0.045 (4)0.046 (4)0.007 (3)0.014 (3)0.013 (3)
C200.033 (4)0.039 (4)0.036 (4)0.002 (3)0.008 (3)0.006 (3)
C210.024 (3)0.035 (3)0.023 (3)0.004 (3)0.009 (2)0.000 (3)
N30.024 (3)0.026 (2)0.019 (2)0.008 (2)0.001 (2)0.002 (2)
C220.041 (4)0.018 (3)0.033 (3)0.008 (3)0.006 (3)0.001 (2)
C230.029 (3)0.019 (3)0.029 (3)0.007 (2)0.000 (3)0.003 (2)
C240.033 (4)0.039 (4)0.035 (4)0.007 (3)0.001 (3)0.007 (3)
C250.041 (4)0.031 (3)0.044 (4)0.013 (3)0.004 (3)0.013 (3)
C260.039 (4)0.041 (4)0.040 (4)0.009 (3)0.003 (3)0.015 (3)
C270.026 (3)0.036 (3)0.026 (3)0.003 (3)0.003 (3)0.008 (3)
C280.065 (5)0.049 (4)0.036 (4)0.006 (4)0.014 (3)0.008 (3)
N40.033 (3)0.025 (2)0.025 (3)0.006 (2)0.005 (2)0.009 (2)
O10.036 (3)0.034 (2)0.028 (2)0.0085 (19)0.0022 (19)0.0041 (19)
O20.034 (2)0.028 (2)0.024 (2)0.0031 (18)0.0057 (18)0.0012 (17)
C290.037 (4)0.032 (3)0.028 (3)0.006 (3)0.005 (3)0.009 (3)
C300.032 (4)0.053 (4)0.045 (4)0.003 (3)0.002 (3)0.002 (3)
Cl10.0513 (11)0.0365 (9)0.0393 (9)0.0018 (8)0.0136 (8)0.0081 (7)
O30.092 (4)0.046 (3)0.081 (4)0.033 (3)0.013 (3)0.015 (3)
O40.067 (4)0.065 (3)0.068 (3)0.028 (3)0.032 (3)0.008 (3)
O50.083 (4)0.068 (3)0.065 (4)0.045 (3)0.022 (3)0.020 (3)
O60.105 (5)0.099 (4)0.032 (3)0.003 (4)0.001 (3)0.003 (3)
Geometric parameters (Å, º) top
Ni1—O22.087 (4)C15—H15A0.9900
Ni1—O12.109 (4)C15—H15B0.9900
Ni1—N32.117 (4)C16—C211.405 (7)
Ni1—N12.121 (4)C16—C171.410 (7)
Ni1—N22.133 (4)C17—C181.368 (8)
Ni1—N42.151 (4)C17—H170.9500
Ni1—C292.417 (6)C18—C191.380 (8)
N1—C61.360 (6)C18—H180.9500
N1—C11.361 (6)C19—C201.380 (8)
C1—C31.396 (7)C19—H190.9500
C1—C21.491 (7)C20—C211.394 (7)
C2—H2A0.9800C20—H200.9500
C2—H2B0.9800C21—N31.428 (7)
C2—H2C0.9800N3—C221.309 (6)
C3—C41.378 (7)C22—C231.449 (8)
C3—H30.9500C22—H220.9500
C4—C51.394 (7)C23—N41.356 (6)
C4—H40.9500C23—C241.381 (7)
C5—C61.379 (7)C24—C251.386 (8)
C5—H50.9500C24—H240.9500
C6—C71.473 (7)C25—C261.370 (8)
C7—N21.269 (6)C25—H250.9500
C7—H70.9500C26—C271.419 (7)
N2—C81.437 (6)C26—H260.9500
C8—C131.393 (8)C27—N41.331 (7)
C8—C91.399 (8)C27—C281.509 (8)
C9—C101.394 (7)C28—H28A0.9800
C9—H90.9500C28—H28B0.9800
C10—C111.380 (8)C28—H28C0.9800
C10—H100.9500O1—C291.265 (6)
C11—C121.397 (8)O2—C291.270 (6)
C11—H110.9500C29—C301.490 (8)
C12—C131.385 (7)C30—H30A0.9800
C12—H120.9500C30—H30B0.9800
C13—C141.517 (7)C30—H30C0.9800
C14—C151.556 (7)Cl1—O61.422 (4)
C14—H14A0.9900Cl1—O51.426 (4)
C14—H14B0.9900Cl1—O31.428 (4)
C15—C161.490 (7)Cl1—O41.429 (5)
O2—Ni1—O163.17 (14)C16—C15—C14109.9 (5)
O2—Ni1—N396.41 (15)C16—C15—H15A109.7
O1—Ni1—N3158.19 (15)C14—C15—H15A109.7
O2—Ni1—N1164.65 (15)C16—C15—H15B109.7
O1—Ni1—N1103.58 (15)C14—C15—H15B109.7
N3—Ni1—N197.63 (17)H15A—C15—H15B108.2
O2—Ni1—N290.38 (15)C21—C16—C17116.9 (5)
O1—Ni1—N281.85 (16)C21—C16—C15123.1 (5)
N3—Ni1—N2107.24 (18)C17—C16—C15120.0 (5)
N1—Ni1—N279.57 (16)C18—C17—C16121.8 (6)
O2—Ni1—N484.69 (15)C18—C17—H17119.1
O1—Ni1—N490.08 (17)C16—C17—H17119.1
N3—Ni1—N479.87 (18)C17—C18—C19120.6 (6)
N1—Ni1—N4103.85 (16)C17—C18—H18119.7
N2—Ni1—N4171.81 (19)C19—C18—H18119.7
O2—Ni1—C2931.69 (15)C20—C19—C18119.5 (6)
O1—Ni1—C2931.52 (16)C20—C19—H19120.3
N3—Ni1—C29127.48 (18)C18—C19—H19120.3
N1—Ni1—C29134.88 (19)C19—C20—C21120.5 (6)
N2—Ni1—C2986.64 (18)C19—C20—H20119.7
N4—Ni1—C2985.73 (18)C21—C20—H20119.7
C6—N1—C1116.9 (4)C20—C21—C16120.7 (5)
C6—N1—Ni1111.2 (3)C20—C21—N3119.2 (5)
C1—N1—Ni1131.9 (4)C16—C21—N3120.1 (5)
N1—C1—C3120.6 (5)C22—N3—C21115.2 (5)
N1—C1—C2119.5 (5)C22—N3—Ni1110.9 (4)
C3—C1—C2119.8 (5)C21—N3—Ni1133.9 (4)
C1—C2—H2A109.5N3—C22—C23120.6 (5)
C1—C2—H2B109.5N3—C22—H22119.7
H2A—C2—H2B109.5C23—C22—H22119.7
C1—C2—H2C109.5N4—C23—C24123.5 (6)
H2A—C2—H2C109.5N4—C23—C22116.9 (5)
H2B—C2—H2C109.5C24—C23—C22119.6 (5)
C4—C3—C1121.9 (5)C23—C24—C25117.6 (6)
C4—C3—H3119.1C23—C24—H24121.2
C1—C3—H3119.1C25—C24—H24121.2
C3—C4—C5117.4 (5)C26—C25—C24120.0 (6)
C3—C4—H4121.3C26—C25—H25120.0
C5—C4—H4121.3C24—C25—H25120.0
C6—C5—C4118.6 (5)C25—C26—C27119.2 (6)
C6—C5—H5120.7C25—C26—H26120.4
C4—C5—H5120.7C27—C26—H26120.4
N1—C6—C5124.5 (5)N4—C27—C26120.9 (6)
N1—C6—C7116.0 (5)N4—C27—C28120.5 (5)
C5—C6—C7119.5 (5)C26—C27—C28118.6 (6)
N2—C7—C6120.5 (5)C27—C28—H28A109.5
N2—C7—H7119.8C27—C28—H28B109.5
C6—C7—H7119.8H28A—C28—H28B109.5
C7—N2—C8115.8 (4)C27—C28—H28C109.5
C7—N2—Ni1111.2 (3)H28A—C28—H28C109.5
C8—N2—Ni1129.7 (3)H28B—C28—H28C109.5
C13—C8—C9120.0 (5)C27—N4—C23118.6 (5)
C13—C8—N2120.6 (5)C27—N4—Ni1130.4 (4)
C9—C8—N2119.4 (5)C23—N4—Ni1109.1 (4)
C10—C9—C8120.1 (6)C29—O1—Ni187.8 (4)
C10—C9—H9119.9C29—O2—Ni188.7 (3)
C8—C9—H9119.9O1—C29—O2120.2 (6)
C11—C10—C9119.8 (6)O1—C29—C30119.3 (6)
C11—C10—H10120.1O2—C29—C30120.5 (5)
C9—C10—H10120.1O1—C29—Ni160.7 (3)
C10—C11—C12119.9 (6)O2—C29—Ni159.7 (3)
C10—C11—H11120.0C30—C29—Ni1175.6 (4)
C12—C11—H11120.0C29—C30—H30A109.5
C13—C12—C11120.8 (6)C29—C30—H30B109.5
C13—C12—H12119.6H30A—C30—H30B109.5
C11—C12—H12119.6C29—C30—H30C109.5
C12—C13—C8119.3 (5)H30A—C30—H30C109.5
C12—C13—C14121.0 (5)H30B—C30—H30C109.5
C8—C13—C14119.7 (5)O6—Cl1—O5110.9 (3)
C13—C14—C15113.1 (5)O6—Cl1—O3109.8 (3)
C13—C14—H14A109.0O5—Cl1—O3108.6 (3)
C15—C14—H14A109.0O6—Cl1—O4109.7 (3)
C13—C14—H14B109.0O5—Cl1—O4109.7 (3)
C15—C14—H14B109.0O3—Cl1—O4108.1 (3)
H14A—C14—H14B107.8
O2—Ni1—N1—C643.6 (9)C15—C16—C21—N33.0 (8)
O1—Ni1—N1—C672.7 (4)C20—C21—N3—C2256.1 (7)
N3—Ni1—N1—C6112.4 (4)C16—C21—N3—C22123.4 (5)
N2—Ni1—N1—C66.2 (4)C20—C21—N3—Ni1122.4 (5)
N4—Ni1—N1—C6166.2 (4)C16—C21—N3—Ni158.1 (7)
C29—Ni1—N1—C668.3 (5)O2—Ni1—N3—C2274.9 (4)
O2—Ni1—N1—C1136.2 (6)O1—Ni1—N3—C2255.2 (6)
O1—Ni1—N1—C1107.1 (5)N1—Ni1—N3—C22111.3 (4)
N3—Ni1—N1—C167.8 (5)N2—Ni1—N3—C22167.3 (3)
N2—Ni1—N1—C1174.0 (5)N4—Ni1—N3—C228.5 (4)
N4—Ni1—N1—C113.6 (5)C29—Ni1—N3—C2268.1 (4)
C29—Ni1—N1—C1111.5 (5)O2—Ni1—N3—C21106.6 (5)
C6—N1—C1—C34.2 (8)O1—Ni1—N3—C21126.3 (5)
Ni1—N1—C1—C3175.6 (4)N1—Ni1—N3—C2167.2 (5)
C6—N1—C1—C2177.3 (5)N2—Ni1—N3—C2114.2 (5)
Ni1—N1—C1—C22.9 (9)N4—Ni1—N3—C21170.0 (5)
N1—C1—C3—C43.0 (10)C29—Ni1—N3—C21113.4 (5)
C2—C1—C3—C4178.4 (6)C21—N3—C22—C23177.1 (5)
C1—C3—C4—C50.5 (10)Ni1—N3—C22—C231.7 (6)
C3—C4—C5—C60.6 (9)N3—C22—C23—N411.5 (8)
C1—N1—C6—C53.2 (9)N3—C22—C23—C24169.8 (5)
Ni1—N1—C6—C5176.6 (5)N4—C23—C24—C252.6 (8)
C1—N1—C6—C7178.8 (5)C22—C23—C24—C25178.8 (5)
Ni1—N1—C6—C71.4 (6)C23—C24—C25—C263.9 (8)
C4—C5—C6—N10.8 (9)C24—C25—C26—C270.6 (8)
C4—C5—C6—C7178.7 (5)C25—C26—C27—N44.4 (8)
N1—C6—C7—N28.9 (8)C25—C26—C27—C28173.3 (5)
C5—C6—C7—N2173.0 (6)C26—C27—N4—C235.7 (8)
C6—C7—N2—C8175.5 (5)C28—C27—N4—C23172.0 (5)
C6—C7—N2—Ni113.9 (7)C26—C27—N4—Ni1156.9 (4)
O2—Ni1—N2—C7157.5 (4)C28—C27—N4—Ni125.5 (8)
O1—Ni1—N2—C794.7 (4)C24—C23—N4—C272.2 (8)
N3—Ni1—N2—C7105.6 (4)C22—C23—N4—C27176.4 (5)
N1—Ni1—N2—C710.8 (4)C24—C23—N4—Ni1163.8 (4)
C29—Ni1—N2—C7126.0 (4)C22—C23—N4—Ni117.6 (6)
O2—Ni1—N2—C80.8 (5)O2—Ni1—N4—C2780.4 (5)
O1—Ni1—N2—C863.7 (5)O1—Ni1—N4—C2717.3 (5)
N3—Ni1—N2—C896.0 (5)N3—Ni1—N4—C27177.9 (5)
N1—Ni1—N2—C8169.2 (5)N1—Ni1—N4—C2786.7 (5)
C29—Ni1—N2—C832.3 (5)C29—Ni1—N4—C2748.6 (5)
C7—N2—C8—C13105.4 (6)O2—Ni1—N4—C2383.4 (3)
Ni1—N2—C8—C1397.1 (6)O1—Ni1—N4—C23146.5 (3)
C7—N2—C8—C973.2 (7)N3—Ni1—N4—C2314.1 (3)
Ni1—N2—C8—C984.3 (6)N1—Ni1—N4—C23109.5 (3)
C13—C8—C9—C101.3 (8)C29—Ni1—N4—C23115.2 (4)
N2—C8—C9—C10177.3 (5)O2—Ni1—O1—C292.3 (3)
C8—C9—C10—C110.4 (8)N3—Ni1—O1—C2919.7 (6)
C9—C10—C11—C120.7 (9)N1—Ni1—O1—C29174.0 (3)
C10—C11—C12—C130.6 (9)N2—Ni1—O1—C2996.9 (3)
C11—C12—C13—C82.3 (8)N4—Ni1—O1—C2981.7 (3)
C11—C12—C13—C14178.3 (5)O1—Ni1—O2—C292.3 (3)
C9—C8—C13—C122.6 (8)N3—Ni1—O2—C29169.6 (3)
N2—C8—C13—C12176.0 (5)N1—Ni1—O2—C2934.2 (8)
C9—C8—C13—C14177.9 (5)N2—Ni1—O2—C2983.0 (3)
N2—C8—C13—C143.5 (8)N4—Ni1—O2—C2990.5 (3)
C12—C13—C14—C15111.2 (6)Ni1—O1—C29—O23.9 (5)
C8—C13—C14—C1569.3 (7)Ni1—O1—C29—C30175.0 (5)
C13—C14—C15—C16148.2 (5)Ni1—O2—C29—O14.0 (5)
C14—C15—C16—C21117.4 (6)Ni1—O2—C29—C30174.9 (5)
C14—C15—C16—C1761.1 (6)O2—Ni1—C29—O1176.1 (5)
C21—C16—C17—C180.9 (8)N3—Ni1—C29—O1170.9 (3)
C15—C16—C17—C18177.7 (5)N1—Ni1—C29—O18.2 (4)
C16—C17—C18—C190.2 (9)N2—Ni1—C29—O179.9 (3)
C17—C18—C19—C200.4 (9)N4—Ni1—C29—O197.1 (3)
C18—C19—C20—C210.2 (9)O1—Ni1—C29—O2176.1 (5)
C19—C20—C21—C160.5 (9)N3—Ni1—C29—O213.0 (4)
C19—C20—C21—N3179.0 (5)N1—Ni1—C29—O2167.9 (3)
C17—C16—C21—C201.0 (8)N2—Ni1—C29—O296.2 (3)
C15—C16—C21—C20177.5 (5)N4—Ni1—C29—O286.8 (3)
C17—C16—C21—N3178.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.453.274 (6)144
C7—H7···O4ii0.952.413.290 (7)155
C20—H20···O3iii0.952.433.366 (8)168
C15—H15B···O20.992.543.523 (7)174
C15—H15B···N30.992.472.935 (7)108
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C2H3O2)(C28H26N4)]ClO4
Mr635.73
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.5759 (8), 11.4975 (10), 14.8322 (13)
α, β, γ (°)79.392 (2), 78.102 (2), 81.327 (2)
V3)1396.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.23 × 0.11 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10545, 6856, 3311
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.149, 1.05
No. of reflections6856
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 1.84

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.453.274 (6)144.3
C7—H7···O4ii0.952.413.290 (7)154.8
C20—H20···O3iii0.952.433.366 (8)168.3
C15—H15B···O20.992.543.523 (7)174.3
C15—H15B···N30.992.472.935 (7)108.2
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (KRF-2008–313-C00433).

References

First citationBanerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533–2541.  CSD CrossRef
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationMartin, L. Y., Sperati, C. R. & Busch, D. H. (1977). J. Am. Chem. Soc. 99, 2968–2981.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds