metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine)(2-hy­dr­oxy-2,2-di­phenyl­acetato)­copper(II) nitrate dihydrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: xuxuan2004@yahoo.com.cn

(Received 20 August 2010; accepted 3 September 2010; online 11 September 2010)

In the title complex, [Cu(C14H11O3)(C10H8N2)2]NO3·2H2O, the CuII atom is coordinated by four N atoms from two 2,2′-bipyridine ligands and two O atoms from one benzilate ligand in a distorted octa­hedral geometry. A supra­molecular network is formed via inter­molecular O—H⋯O and C—H⋯O hydrogen-bonding inter­actions. ππ stacking inter­actions between neighboring pyridine rings are also present, the centroid—centroid distance being 3.808 (2) Å.

Related literature

For related structures, see: Carballo et al. (2005[Carballo, R., Covelo, B., Vazquez-Lopez, E. M., Garcia-Martinez, E., Castineiras, A. & Niclos, J. (2005). Z. Anorg. Allg. Chem. 631, 785-792.]); Herrmann et al. (1994[Herrmann, W. A., Roesky, P. W., Scherer, W. & Kleine, M. (1994). Organometallics, 13, 4536-4542.]); Qiu et al. (2007[Qiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819-1824.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H11O3)(C10H8N2)2]NO3·2H2O

  • Mr = 701.18

  • Monoclinic, P 21 /c

  • a = 10.612 (2) Å

  • b = 25.758 (6) Å

  • c = 12.322 (3) Å

  • β = 108.220 (3)°

  • V = 3199.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.872

  • 16165 measured reflections

  • 5750 independent reflections

  • 3659 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.138

  • S = 1.00

  • 5750 reflections

  • 434 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H3W⋯O5i 0.85 2.16 2.844 (6) 138
O1W—H1W⋯O4ii 0.85 2.07 2.884 (7) 159
O2W—H3W⋯O1Wiii 0.85 2.59 3.041 (7) 114
O1W—H2W⋯O2Wiii 0.85 2.46 3.041 (7) 126
O1W—H2W⋯O4iv 0.85 2.28 2.856 (6) 125
O3—H3⋯O6v 0.82 2.48 3.210 (5) 149
O3—H3⋯O1 0.82 2.10 2.597 (4) 119
C10—H10⋯O1W 0.93 2.41 3.341 (7) 174
C8—H8⋯O3iv 0.93 2.54 3.389 (6) 152
C4—H4⋯O5vi 0.93 2.59 3.488 (6) 162
C12—H12⋯O5vii 0.93 2.38 3.285 (7) 165
C14—H14⋯O1viii 0.93 2.56 3.420 (6) 155
C17—H17⋯O1viii 0.93 2.39 3.270 (5) 159
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrogen-bonding interactions between ligands are specific and directional. In this context, 2,2'-bipyridine and benzilic acid are excellent candidates for construction of three-demensional network motifs, and can simultaneously coordinate metal ions (Carballo et al., 2005; Herrmann et al., 1994; Qiu et al., 2007). Herein, we report the crystal structure of a new coordination polymer, (I).

In (I), the CuII centre is coordinated by two oxygen atoms from one benzilate ligand and four N atoms from two 2,2'-bipyridine ligands (Fig. 1), and represents a distorted octahedral geometry. The Cu—N distances range from 1.982 (3) to 2.174 (3) Å, and the Cu—O distances are 1.982 (3) and 2.744 (3) Å, respectively. However, the O—Cu—N and N—Cu—N angles fall in the range from 89.06 (1) to 158.18 (1) ° and 77.87 (1) to 175.10 (1) °, respectively. Intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) link each asymmetric unit to form a three-dimensional supramolecular network motif (Fig. 2) in (0 0 1) plane, which is stabilized by π-π stacking interactions between neighboring pyridyl rings (the centriod—centriod distance is 3.808 Å).

Related literature top

For related structures, see: Carballo et al. (2005); Herrmann et al. (1994); Qiu et al. (2007).

Experimental top

A mixture of CuNO3 (0.063 g, 0.5mmol), 2,2'-bipyridine (0.078 g; 0.5 mmol), benzilic acid (0.114 g; 0.5 mmol), water (10 mL) was stirred vigorously for 60 min and the blue block crystals were obtained by evaporating mother liquor.

Refinement top

Water H atoms and hydroxyl H atoms were tentatively located from difference Fourier maps and were refined with distance restraints of O–H = 0.84 and 0.82 Å, respectively, H···H = 1.35 Å, and Uiso(H) = 1.5 Ueq(O). Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit of (I) showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the three-dimensional supramolecular network of the title compound, hydrogen bonds are shown as dashed linesand. The H-atoms not involved in H-bonds have been excluded for clarity.
Bis(2,2'-bipyridine)(2-hydroxy-2,2-diphenylacetato)copper(II) nitrate dihydrate top
Crystal data top
[Cu(C14H11O3)(C10H8N2)2]NO3·2H2OF(000) = 1452
Mr = 701.18Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2592 reflections
a = 10.612 (2) Åθ = 2.2–22.7°
b = 25.758 (6) ŵ = 0.74 mm1
c = 12.322 (3) ÅT = 296 K
β = 108.220 (3)°Block, blue
V = 3199.3 (13) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5750 independent reflections
Radiation source: fine-focus sealed tube3659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 129
Tmin = 0.848, Tmax = 0.872k = 3030
16165 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.053P)2 + 2.8562P]
where P = (Fo2 + 2Fc2)/3
5750 reflections(Δ/σ)max < 0.001
434 parametersΔρmax = 0.57 e Å3
6 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(C14H11O3)(C10H8N2)2]NO3·2H2OV = 3199.3 (13) Å3
Mr = 701.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.612 (2) ŵ = 0.74 mm1
b = 25.758 (6) ÅT = 296 K
c = 12.322 (3) Å0.23 × 0.21 × 0.19 mm
β = 108.220 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
5750 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3659 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.872Rint = 0.057
16165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0556 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.57 e Å3
5750 reflectionsΔρmin = 0.51 e Å3
434 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.41218 (5)0.128914 (18)0.88185 (4)0.03907 (17)
O10.6773 (3)0.12292 (11)1.0021 (2)0.0493 (7)
O20.5624 (3)0.15418 (10)0.8330 (2)0.0416 (7)
O30.9044 (3)0.15772 (12)0.9953 (2)0.0487 (7)
H30.88000.13961.03970.073*
O40.9802 (5)0.43639 (17)0.8832 (4)0.1032 (14)
O51.1068 (4)0.38476 (16)0.8257 (4)0.0910 (13)
O60.9367 (4)0.42004 (17)0.7058 (4)0.0890 (12)
O1W0.1694 (5)0.02577 (18)0.5874 (4)0.1147 (15)
H2W0.16580.03530.52040.172*
H1W0.12070.00110.57730.172*
O2W0.6493 (5)0.92807 (19)0.5360 (4)0.1224 (16)
H4W0.62970.95270.48770.184*
H3W0.73320.92590.55270.184*
N10.4082 (3)0.19785 (13)0.9567 (3)0.0407 (8)
N20.2541 (3)0.16914 (13)0.7536 (3)0.0422 (8)
N30.3174 (3)0.08879 (13)0.9731 (3)0.0432 (8)
N40.4228 (3)0.05833 (12)0.8213 (3)0.0414 (8)
N51.0072 (5)0.41464 (17)0.8048 (4)0.0656 (11)
C10.4840 (4)0.20910 (18)1.0623 (4)0.0509 (11)
H10.53720.18311.10550.061*
C20.4873 (5)0.2571 (2)1.1103 (4)0.0637 (14)
H20.53970.26341.18510.076*
C30.4119 (5)0.2954 (2)1.0458 (5)0.0705 (16)
H3A0.41460.32871.07530.085*
C40.3318 (5)0.28473 (18)0.9368 (5)0.0644 (14)
H40.27890.31070.89280.077*
C50.3301 (4)0.23523 (16)0.8930 (4)0.0442 (10)
C60.2447 (4)0.21925 (16)0.7790 (3)0.0415 (10)
C70.1595 (5)0.25249 (19)0.7035 (4)0.0591 (13)
H70.15520.28730.72210.071*
C80.0810 (5)0.2338 (2)0.6007 (4)0.0714 (15)
H80.02260.25570.54880.086*
C90.0892 (5)0.1829 (2)0.5753 (4)0.0701 (15)
H90.03650.16950.50590.084*
C100.1764 (5)0.15173 (18)0.6536 (4)0.0547 (12)
H100.18140.11680.63600.066*
C110.2639 (5)0.10780 (19)1.0494 (4)0.0549 (12)
H110.27070.14331.06390.066*
C120.1999 (5)0.0782 (2)1.1073 (4)0.0670 (14)
H120.16330.09281.15960.080*
C130.1914 (6)0.0260 (2)1.0854 (5)0.0752 (16)
H130.14970.00441.12420.090*
C140.2437 (5)0.0054 (2)1.0070 (4)0.0623 (13)
H140.23630.03000.99110.075*
C150.3082 (4)0.03765 (16)0.9512 (4)0.0434 (10)
C160.3693 (4)0.02037 (16)0.8674 (3)0.0417 (10)
C170.3744 (5)0.03074 (17)0.8344 (4)0.0560 (12)
H170.33700.05690.86640.067*
C180.4351 (5)0.04255 (18)0.7543 (4)0.0639 (14)
H180.43900.07680.73160.077*
C190.4897 (5)0.00371 (18)0.7080 (4)0.0626 (13)
H190.53200.01090.65410.075*
C200.4803 (5)0.04618 (17)0.7434 (4)0.0518 (12)
H200.51610.07280.71120.062*
C210.6700 (4)0.14445 (14)0.9122 (4)0.0387 (10)
C220.8000 (4)0.16241 (15)0.8909 (3)0.0376 (9)
C230.7908 (4)0.21966 (15)0.8583 (3)0.0393 (10)
C240.7320 (5)0.25356 (16)0.9140 (4)0.0506 (11)
H240.69620.24090.96870.061*
C250.7252 (5)0.30584 (18)0.8902 (5)0.0645 (14)
H250.68490.32820.92860.077*
C260.7776 (5)0.32494 (18)0.8103 (4)0.0606 (13)
H260.77230.36020.79320.073*
C270.8376 (5)0.29183 (19)0.7558 (4)0.0610 (13)
H270.87420.30480.70200.073*
C280.8451 (4)0.23917 (17)0.7792 (4)0.0511 (11)
H280.88680.21710.74150.061*
C290.8237 (4)0.12686 (15)0.7997 (3)0.0392 (9)
C300.7340 (5)0.12378 (17)0.6913 (4)0.0546 (12)
H300.65880.14470.67150.066*
C310.7548 (6)0.0900 (2)0.6122 (4)0.0709 (15)
H310.69290.08770.53970.085*
C320.8672 (7)0.0595 (2)0.6401 (6)0.0791 (17)
H320.88200.03700.58640.095*
C330.9555 (6)0.0627 (2)0.7457 (6)0.0794 (17)
H331.03140.04220.76460.095*
C340.9351 (5)0.09591 (18)0.8255 (4)0.0592 (13)
H340.99710.09750.89800.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0364 (3)0.0342 (3)0.0450 (3)0.0020 (2)0.0105 (2)0.0002 (2)
O10.0513 (19)0.0515 (18)0.0466 (18)0.0013 (15)0.0173 (15)0.0154 (14)
O20.0374 (17)0.0392 (16)0.0461 (17)0.0033 (13)0.0101 (14)0.0019 (13)
O30.0391 (17)0.056 (2)0.0426 (17)0.0052 (14)0.0012 (14)0.0060 (14)
O40.122 (4)0.099 (3)0.101 (3)0.014 (3)0.052 (3)0.037 (3)
O50.083 (3)0.087 (3)0.106 (3)0.021 (2)0.035 (3)0.023 (2)
O60.072 (3)0.113 (3)0.075 (3)0.002 (2)0.013 (2)0.013 (2)
O1W0.105 (4)0.113 (4)0.120 (4)0.008 (3)0.025 (3)0.028 (3)
O2W0.091 (3)0.142 (4)0.126 (4)0.007 (3)0.022 (3)0.002 (3)
N10.0338 (19)0.045 (2)0.043 (2)0.0035 (16)0.0108 (17)0.0041 (16)
N20.036 (2)0.040 (2)0.046 (2)0.0015 (16)0.0063 (17)0.0025 (16)
N30.037 (2)0.043 (2)0.049 (2)0.0013 (16)0.0127 (17)0.0030 (16)
N40.040 (2)0.040 (2)0.043 (2)0.0030 (16)0.0110 (17)0.0023 (16)
N50.069 (3)0.060 (3)0.072 (3)0.016 (2)0.028 (3)0.000 (2)
C10.042 (3)0.057 (3)0.051 (3)0.003 (2)0.010 (2)0.008 (2)
C20.050 (3)0.075 (4)0.066 (3)0.008 (3)0.017 (3)0.027 (3)
C30.061 (3)0.058 (3)0.091 (4)0.004 (3)0.021 (3)0.039 (3)
C40.058 (3)0.047 (3)0.084 (4)0.008 (2)0.016 (3)0.007 (3)
C50.035 (2)0.042 (2)0.055 (3)0.001 (2)0.014 (2)0.006 (2)
C60.034 (2)0.046 (3)0.044 (3)0.0041 (19)0.011 (2)0.000 (2)
C70.051 (3)0.056 (3)0.065 (3)0.016 (2)0.011 (3)0.012 (2)
C80.054 (3)0.087 (4)0.060 (4)0.023 (3)0.002 (3)0.014 (3)
C90.053 (3)0.090 (4)0.051 (3)0.006 (3)0.007 (3)0.005 (3)
C100.050 (3)0.051 (3)0.054 (3)0.001 (2)0.003 (2)0.006 (2)
C110.050 (3)0.059 (3)0.061 (3)0.000 (2)0.026 (3)0.000 (2)
C120.061 (3)0.081 (4)0.069 (3)0.001 (3)0.034 (3)0.005 (3)
C130.083 (4)0.078 (4)0.076 (4)0.013 (3)0.041 (3)0.018 (3)
C140.067 (3)0.056 (3)0.066 (3)0.006 (3)0.023 (3)0.011 (2)
C150.035 (2)0.043 (3)0.046 (3)0.0045 (19)0.003 (2)0.009 (2)
C160.036 (2)0.040 (2)0.043 (3)0.0039 (18)0.003 (2)0.0070 (19)
C170.064 (3)0.037 (3)0.065 (3)0.009 (2)0.018 (3)0.004 (2)
C180.075 (4)0.040 (3)0.072 (4)0.001 (3)0.018 (3)0.007 (2)
C190.071 (4)0.049 (3)0.073 (3)0.000 (3)0.030 (3)0.010 (2)
C200.054 (3)0.049 (3)0.054 (3)0.009 (2)0.018 (2)0.003 (2)
C210.041 (3)0.030 (2)0.044 (3)0.0003 (18)0.012 (2)0.0027 (18)
C220.033 (2)0.041 (2)0.037 (2)0.0013 (18)0.0094 (19)0.0019 (18)
C230.035 (2)0.035 (2)0.044 (2)0.0055 (18)0.008 (2)0.0010 (18)
C240.060 (3)0.040 (3)0.057 (3)0.007 (2)0.025 (2)0.003 (2)
C250.070 (4)0.045 (3)0.080 (4)0.001 (3)0.025 (3)0.008 (3)
C260.055 (3)0.041 (3)0.075 (4)0.006 (2)0.006 (3)0.007 (3)
C270.061 (3)0.053 (3)0.067 (3)0.013 (3)0.018 (3)0.017 (3)
C280.051 (3)0.050 (3)0.056 (3)0.005 (2)0.022 (2)0.003 (2)
C290.039 (2)0.036 (2)0.047 (2)0.0025 (19)0.019 (2)0.0019 (19)
C300.067 (3)0.050 (3)0.047 (3)0.003 (2)0.018 (2)0.003 (2)
C310.095 (5)0.065 (3)0.054 (3)0.010 (3)0.025 (3)0.009 (3)
C320.107 (5)0.058 (3)0.091 (5)0.005 (3)0.058 (4)0.012 (3)
C330.073 (4)0.074 (4)0.099 (5)0.016 (3)0.040 (4)0.001 (3)
C340.048 (3)0.063 (3)0.069 (3)0.010 (2)0.022 (3)0.002 (3)
Geometric parameters (Å, º) top
Cu1—O21.982 (3)C11—H110.9300
Cu1—N41.982 (3)C12—C131.369 (7)
Cu1—N12.007 (3)C12—H120.9300
Cu1—N32.013 (3)C13—C141.362 (7)
Cu1—N22.174 (3)C13—H130.9300
O1—C211.220 (5)C14—C151.388 (6)
O2—C211.274 (5)C14—H140.9300
O3—C221.417 (4)C15—C161.450 (6)
O3—H30.8200C16—C171.384 (6)
O4—N51.225 (5)C17—C181.370 (6)
O5—N51.267 (5)C17—H170.9300
O6—N51.223 (5)C18—C191.367 (7)
O1W—H2W0.8499C18—H180.9300
O1W—H1W0.8501C19—C201.371 (6)
O2W—H4W0.8499C19—H190.9300
O2W—H3W0.8499C20—H200.9300
N1—C11.330 (5)C21—C221.553 (6)
N1—C51.350 (5)C22—C231.523 (5)
N2—C101.328 (5)C22—C291.530 (5)
N2—C61.339 (5)C23—C281.374 (6)
N3—C111.334 (5)C23—C241.375 (6)
N3—C151.342 (5)C24—C251.375 (6)
N4—C201.326 (5)C24—H240.9300
N4—C161.343 (5)C25—C261.365 (7)
C1—C21.366 (6)C25—H250.9300
C1—H10.9300C26—C271.360 (7)
C2—C31.359 (7)C26—H260.9300
C2—H20.9300C27—C281.384 (6)
C3—C41.374 (7)C27—H270.9300
C3—H3A0.9300C28—H280.9300
C4—C51.383 (6)C29—C341.378 (6)
C4—H40.9300C29—C301.379 (6)
C5—C61.473 (6)C30—C311.375 (6)
C6—C71.375 (6)C30—H300.9300
C7—C81.368 (7)C31—C321.379 (8)
C7—H70.9300C31—H310.9300
C8—C91.356 (7)C32—C331.347 (8)
C8—H80.9300C32—H320.9300
C9—C101.369 (6)C33—C341.371 (7)
C9—H90.9300C33—H330.9300
C10—H100.9300C34—H340.9300
C11—C121.362 (6)
O2—Cu1—N492.34 (13)C12—C13—H13119.8
O2—Cu1—N189.06 (12)C13—C14—C15119.5 (5)
N4—Cu1—N1175.10 (14)C13—C14—H14120.3
O2—Cu1—N3158.18 (12)C15—C14—H14120.3
N4—Cu1—N380.61 (14)N3—C15—C14120.2 (4)
N1—Cu1—N396.40 (14)N3—C15—C16115.1 (4)
O2—Cu1—N297.69 (12)C14—C15—C16124.7 (4)
N4—Cu1—N2106.57 (13)N4—C16—C17120.5 (4)
N1—Cu1—N277.87 (13)N4—C16—C15114.9 (4)
N3—Cu1—N2104.11 (13)C17—C16—C15124.7 (4)
C21—O2—Cu1108.4 (3)C18—C17—C16119.6 (4)
C22—O3—H3109.5C18—C17—H17120.2
H2W—O1W—H1W104.6C16—C17—H17120.2
H4W—O2W—H3W103.2C19—C18—C17119.6 (4)
C1—N1—C5119.1 (4)C19—C18—H18120.2
C1—N1—Cu1123.3 (3)C17—C18—H18120.2
C5—N1—Cu1117.5 (3)C18—C19—C20118.1 (5)
C10—N2—C6118.1 (4)C18—C19—H19120.9
C10—N2—Cu1128.9 (3)C20—C19—H19120.9
C6—N2—Cu1112.8 (3)N4—C20—C19123.2 (4)
C11—N3—C15118.8 (4)N4—C20—H20118.4
C11—N3—Cu1127.0 (3)C19—C20—H20118.4
C15—N3—Cu1114.1 (3)O1—C21—O2125.0 (4)
C20—N4—C16119.1 (4)O1—C21—C22118.8 (4)
C20—N4—Cu1125.6 (3)O2—C21—C22116.3 (3)
C16—N4—Cu1115.3 (3)O3—C22—C23106.8 (3)
O6—N5—O4120.8 (5)O3—C22—C29110.7 (3)
O6—N5—O5118.8 (5)C23—C22—C29113.4 (3)
O4—N5—O5120.3 (5)O3—C22—C21107.8 (3)
N1—C1—C2123.2 (5)C23—C22—C21110.2 (3)
N1—C1—H1118.4C29—C22—C21107.7 (3)
C2—C1—H1118.4C28—C23—C24118.6 (4)
C3—C2—C1118.2 (5)C28—C23—C22122.3 (4)
C3—C2—H2120.9C24—C23—C22119.0 (4)
C1—C2—H2120.9C23—C24—C25121.2 (4)
C2—C3—C4119.8 (5)C23—C24—H24119.4
C2—C3—H3A120.1C25—C24—H24119.4
C4—C3—H3A120.1C26—C25—C24120.0 (5)
C3—C4—C5119.6 (5)C26—C25—H25120.0
C3—C4—H4120.2C24—C25—H25120.0
C5—C4—H4120.2C27—C26—C25119.3 (5)
N1—C5—C4120.0 (4)C27—C26—H26120.4
N1—C5—C6116.0 (4)C25—C26—H26120.4
C4—C5—C6124.0 (4)C26—C27—C28121.2 (5)
N2—C6—C7121.6 (4)C26—C27—H27119.4
N2—C6—C5115.0 (3)C28—C27—H27119.4
C7—C6—C5123.4 (4)C23—C28—C27119.8 (4)
C8—C7—C6119.2 (5)C23—C28—H28120.1
C8—C7—H7120.4C27—C28—H28120.1
C6—C7—H7120.4C34—C29—C30118.2 (4)
C9—C8—C7119.3 (5)C34—C29—C22120.2 (4)
C9—C8—H8120.3C30—C29—C22121.6 (4)
C7—C8—H8120.3C31—C30—C29120.5 (5)
C8—C9—C10118.8 (5)C31—C30—H30119.7
C8—C9—H9120.6C29—C30—H30119.7
C10—C9—H9120.6C30—C31—C32120.1 (5)
N2—C10—C9122.9 (4)C30—C31—H31119.9
N2—C10—H10118.6C32—C31—H31119.9
C9—C10—H10118.6C33—C32—C31119.5 (5)
N3—C11—C12123.7 (5)C33—C32—H32120.3
N3—C11—H11118.2C31—C32—H32120.3
C12—C11—H11118.2C32—C33—C34120.9 (5)
C11—C12—C13117.4 (5)C32—C33—H33119.6
C11—C12—H12121.3C34—C33—H33119.6
C13—C12—H12121.3C33—C34—C29120.8 (5)
C14—C13—C12120.4 (5)C33—C34—H34119.6
C14—C13—H13119.8C29—C34—H34119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H3W···O5i0.852.162.844 (6)138
O1W—H1W···O4ii0.852.072.884 (7)159
O2W—H3W···O1Wiii0.852.593.041 (7)114
O1W—H2W···O2Wiii0.852.463.041 (7)126
O1W—H2W···O4iv0.852.282.856 (6)125
O3—H3···O6v0.822.483.210 (5)149
O3—H3···O10.822.102.597 (4)119
C20—H20···O20.932.533.019 (5)113
C30—H30···O20.932.522.994 (5)112
C34—H34···O30.932.352.728 (6)104
C10—H10···O1W0.932.413.341 (7)174
C8—H8···O3iv0.932.543.389 (6)152
C4—H4···O5vi0.932.593.488 (6)162
C12—H12···O5vii0.932.383.285 (7)165
C14—H14···O1viii0.932.563.420 (6)155
C17—H17···O1viii0.932.393.270 (5)159
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z; (vii) x1, y+1/2, z+1/2; (viii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C14H11O3)(C10H8N2)2]NO3·2H2O
Mr701.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.612 (2), 25.758 (6), 12.322 (3)
β (°) 108.220 (3)
V3)3199.3 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.848, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
16165, 5750, 3659
Rint0.057
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.138, 1.00
No. of reflections5750
No. of parameters434
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H3W···O5i0.852.162.844 (6)137.5
O1W—H1W···O4ii0.852.072.884 (7)159.0
O2W—H3W···O1Wiii0.852.593.041 (7)114.3
O1W—H2W···O2Wiii0.852.463.041 (7)125.8
O1W—H2W···O4iv0.852.282.856 (6)125.4
O3—H3···O6v0.822.483.210 (5)149.1
O3—H3···O10.822.102.597 (4)119.0
C10—H10···O1W0.932.413.341 (7)173.9
C8—H8···O3iv0.932.543.389 (6)151.6
C4—H4···O5vi0.932.593.488 (6)162.1
C12—H12···O5vii0.932.383.285 (7)165.4
C14—H14···O1viii0.932.563.420 (6)154.8
C17—H17···O1viii0.932.393.270 (5)158.5
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z; (vii) x1, y+1/2, z+1/2; (viii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for support of this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarballo, R., Covelo, B., Vazquez-Lopez, E. M., Garcia-Martinez, E., Castineiras, A. & Niclos, J. (2005). Z. Anorg. Allg. Chem. 631, 785–792.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerrmann, W. A., Roesky, P. W., Scherer, W. & Kleine, M. (1994). Organometallics, 13, 4536–4542.  CSD CrossRef CAS Web of Science Google Scholar
First citationQiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819–1824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds