organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2533-o2534

5,6-Dimeth­­oxy-4′,5′-di­phenyl­indane-2-spiro-3′-pyrrolidine-2′-spiro-3′′-indoline-1,2′′-dione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 August 2010; accepted 7 September 2010; online 11 September 2010)

In the title compound, C33H28N2O4, the central pyrrolidine ring adopts a half-chair conformation. Both the indolinone and indanone groups are twisted, with their five-membered rings adopting a half-chair and an envelope conformation, respectively. The two benzene rings and the mean plane of the indolinone and indanone groups make dihedral angles of 71.98 (10), 84.32 (10), 86.26 (9) and 78.50 (9)°, respectively, with the central pyrrolidine ring. Intra­molecular C—H⋯O hydrogen bonds stabilize the mol­ecular conformation. In the crystal, pairs of inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. The dimers are inter­connected into ribbons propagating along [110] via weak inter­molecular C—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯π and ππ [centroid–centroid distance = 3.6509 (11) Å] inter­actions are also observed.

Related literature

For general background to heterocycles, see: Kirsch et al. (2004[Kirsch, G., Hesse, S. & Comel, A. (2004). Curr. Org. Chem. 1, 47-63.]); Shi et al. (2009[Shi, F., Mancuso, R. & Larock, R. C. (2009). Tetrahedron Lett. 50, 4067-4070.]); Nair et al. (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]); Nájera et al. (2005[Nájera, C. N. & Sansano, J. M. (2005). Angew. Chem. 117, 6428-6432.]); Coldham et al. (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]). For general background to pyrrolidine derivatives, see: Daly et al. (1986[Daly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265-280.]). For the biological activity of isatin derivatives and spiro­pyrrolidinyloxindoles, see: Cui et al. (1996[Cui, C.-B., Kakeya, H. & Osada, H. (1996). Tetrahedron, 52, 12651-12666.]); Xue et al. (2000[Xue, J., Zhang, Y., Wang, X.-I., Fun, H. K. & Xu, J.-H. (2000). Org. Lett. 2, 2583-2586.]); Klumpp et al. (1998[Klumpp, D. A., Yeung, K. Y., Prakash, G. K. S. & Olah, G. A. (1998). J. Org. Chem. 63, 4481-4484.]); Hilton et al. (2000[Hilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639-2641.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C33H28N2O4

  • Mr = 516.57

  • Triclinic, [P \overline 1]

  • a = 9.2746 (12) Å

  • b = 10.6337 (15) Å

  • c = 14.4279 (19) Å

  • α = 92.369 (3)°

  • β = 98.557 (3)°

  • γ = 115.341 (2)°

  • V = 1262.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.28 × 0.19 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.994

  • 20001 measured reflections

  • 7399 independent reflections

  • 4778 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.159

  • S = 1.05

  • 7399 reflections

  • 360 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the C26–C31, C20–C25 and C13–C18 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.94 (2) 1.94 (2) 2.8559 (19) 164 (2)
C8—H8B⋯O2 0.97 2.49 3.214 (2) 131
C11—H11A⋯O2 0.98 2.55 3.148 (2) 119
C22—H22A⋯O4ii 0.93 2.59 3.471 (2) 159
N1—H1N1⋯Cg2iii 0.93 (2) 2.55 (2) 3.4518 (17) 161.7 (16)
C17—H17ACg3iv 0.93 2.81 3.5609 (18) 139
C28—H28ACg4iii 0.93 2.92 3.501 (2) 121
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The development of new efficient methods to synthesize nitrogen heterocycles with structural diversity is one of the major objectives of modern synthetic organic chemists (Kirsch et al., 2004). Multicomponent 1,3-dipolar cycloaddition of ylidic species, such as azomethine ylides with olefinic dipolarophiles, plays a key role in the construction of biologically active five-membered heterocycles (Shi et al., 2009; Nair et al., 2007; Nájera et al., 2005; Coldham et al., 2005). Highly substituted pyrrolidines have gained much prominence since they form the central skeleton of many natural products (Daly et al., 1986). Isatin and its derivatives possess interesting biological activities and are widely used as precursors for many natural products (Cui et al., 1996, Xue et al., 2000, Klumpp et al., 1998). Spiropyrrolidinyloxindoles are also found in a number of alkaloids of biological importance (Hilton et al., 2000). Due to the biological importance of the aforesaid heterocycles, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

The molecular structure of the title compound is shown in Fig. 1. The central pyrrolidine ring (N1/C12/C9–C11) adopts a half-chair conformation (twisted on the N1–C11 bond), with puckering parameters Q = 0.4196 (18) Å and ϕ = 198.1 (2)° (Cremer & Pople, 1975). Both indolinone and indanone groups are twisted with their five-membered rings adopting a half chair (twisted on the C12–C19 bond) and an envelope (flap on the C9 atom) conformation respectively. The puckering parameters of these two rings are Q = 0.1316 (18) Å, ϕ = 127.6 (8)° and Q = 0.2814 (19) Å, ϕ = 323.9 (4)°. The two benzene rings (C20–C25 and C26–C31) and the mean plane of indolinone and indanone groups make dihedral angles of 71.98 (10), 84.32 (10), 86.26 (9) and 78.50 (9)°, respectively, with the central pyrrolidine ring. Intramolecular C8—H8B···O2 and C11—H11A···O2 hydrogen bonds (Table 1) stabilize the molecular structure. In the crystal structure, intermolecular N2—H1N2···O2 hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2). These dimers are interconnected into ribbons propagating along the [110] direction via weak intermolecular C22—H22A···O4 hydrogen bonds (Fig. 2, Table 1). Weak intermolecular C—H···π (Table 1) and ππ interactions are also observed (Cg1···Cg1v = 3.6509 (11) Å; (v) = 1-x, -y, -z. Cg1 is centroid of benzene ring C2–C7).

Related literature top

For general background to heterocycles, see: Kirsch et al. (2004); Shi et al. (2009); Nair et al. (2007); Nájera et al. (2005); Coldham et al. (2005). For general background to pyrrolidine derivatives, see: Daly et al. (1986). For the biological activity of isatin derivatives and spiropyrrolidinyloxindoles, see: Cui et al. (1996); Xue et al. (2000); Klumpp et al. (1998); Hilton et al. (2000). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (E)-2-bezylylidene-5,6-dimethoxy-2,3-dihydro-1H-indene-1-one (0.001 mmol), isatin (0.001 mmol) and phenylglycine (0.002 mmol) was dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallized from a petroleum ether-ethyl acetate mixture (1:1 v/v) to give the title compound as yellow crystals.

Refinement top

The N-bound hydrogen atoms were located from the difference Fourier map and refined freely. All other hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating-group model were applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, showing chains along the [110] direction. Intermolecular hydrogen bonds are shown as dashed lines.
5,6-Dimethoxy-4',5'-diphenylindane-2-spiro-3'-pyrrolidine-2'-spiro-3''- indoline-1,2''-dione top
Crystal data top
C33H28N2O4Z = 2
Mr = 516.57F(000) = 544
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2746 (12) ÅCell parameters from 2918 reflections
b = 10.6337 (15) Åθ = 2.4–29.7°
c = 14.4279 (19) ŵ = 0.09 mm1
α = 92.369 (3)°T = 100 K
β = 98.557 (3)°Plate, yellow
γ = 115.341 (2)°0.28 × 0.19 × 0.07 mm
V = 1262.9 (3) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7399 independent reflections
Radiation source: fine-focus sealed tube4778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 30.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.976, Tmax = 0.994k = 1515
20001 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.0467P]
where P = (Fo2 + 2Fc2)/3
7399 reflections(Δ/σ)max < 0.001
360 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C33H28N2O4γ = 115.341 (2)°
Mr = 516.57V = 1262.9 (3) Å3
Triclinic, P1Z = 2
a = 9.2746 (12) ÅMo Kα radiation
b = 10.6337 (15) ŵ = 0.09 mm1
c = 14.4279 (19) ÅT = 100 K
α = 92.369 (3)°0.28 × 0.19 × 0.07 mm
β = 98.557 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4778 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.054
20001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
7399 reflectionsΔρmin = 0.32 e Å3
360 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38580 (14)0.30325 (11)0.12688 (8)0.0175 (3)
O20.63136 (15)0.17078 (11)0.45955 (9)0.0190 (3)
O30.36325 (15)0.30867 (11)0.04324 (9)0.0220 (3)
O40.13257 (16)0.24781 (12)0.02810 (9)0.0235 (3)
N10.47665 (17)0.35081 (13)0.37988 (10)0.0135 (3)
N20.38428 (18)0.00712 (13)0.38690 (10)0.0164 (3)
C10.4391 (2)0.22526 (15)0.16088 (12)0.0138 (3)
C20.4020 (2)0.08196 (15)0.12244 (12)0.0147 (3)
C30.2695 (2)0.01163 (16)0.05522 (12)0.0172 (4)
H3A0.19070.01380.02680.021*
C40.2594 (2)0.14310 (16)0.03240 (12)0.0178 (4)
C50.3844 (2)0.17795 (16)0.07342 (12)0.0170 (4)
C60.5147 (2)0.08336 (16)0.14044 (12)0.0172 (4)
H6A0.59660.10620.16720.021*
C70.5197 (2)0.04618 (15)0.16652 (12)0.0142 (3)
C80.6448 (2)0.16427 (15)0.23820 (12)0.0150 (3)
H8A0.74330.21490.21360.018*
H8B0.67150.12930.29610.018*
C90.5599 (2)0.25859 (15)0.25492 (11)0.0133 (3)
C100.66796 (19)0.41814 (14)0.28257 (11)0.0129 (3)
H10A0.61790.46600.24220.016*
C110.6481 (2)0.44920 (15)0.38374 (12)0.0136 (3)
H11A0.71920.42580.42970.016*
C120.44986 (19)0.21556 (15)0.33531 (11)0.0128 (3)
C130.2716 (2)0.11722 (15)0.30263 (11)0.0134 (3)
C140.1448 (2)0.14017 (17)0.25703 (13)0.0177 (4)
H14A0.16200.22820.24010.021*
C150.0105 (2)0.02774 (18)0.23695 (13)0.0225 (4)
H15A0.09730.04110.20600.027*
C160.0361 (2)0.10321 (18)0.26268 (14)0.0228 (4)
H16A0.13950.17720.24690.027*
C170.0892 (2)0.12627 (16)0.31155 (13)0.0200 (4)
H17A0.07160.21370.33000.024*
C180.2417 (2)0.01366 (16)0.33174 (12)0.0152 (3)
C190.5038 (2)0.12758 (15)0.40229 (12)0.0150 (3)
C200.8407 (2)0.47122 (15)0.26691 (12)0.0144 (3)
C210.8771 (2)0.51532 (16)0.17995 (12)0.0177 (4)
H21A0.79520.51450.13370.021*
C221.0331 (2)0.56052 (17)0.16100 (13)0.0215 (4)
H22A1.05460.58850.10230.026*
C231.1560 (2)0.56373 (19)0.22949 (15)0.0265 (4)
H23A1.26090.59540.21740.032*
C241.1231 (2)0.5198 (2)0.31617 (15)0.0302 (5)
H24A1.20570.52130.36210.036*
C250.9666 (2)0.47344 (19)0.33457 (14)0.0230 (4)
H25A0.94540.44340.39280.028*
C260.6764 (2)0.59922 (15)0.40689 (12)0.0141 (3)
C270.8097 (2)0.69237 (16)0.47249 (12)0.0175 (4)
H27A0.88120.66190.50470.021*
C280.8366 (2)0.83123 (16)0.49029 (13)0.0199 (4)
H28A0.92510.89260.53500.024*
C290.7325 (2)0.87811 (16)0.44184 (13)0.0209 (4)
H29A0.75250.97150.45260.025*
C300.5976 (2)0.78502 (17)0.37694 (13)0.0202 (4)
H30A0.52610.81570.34500.024*
C310.5697 (2)0.64619 (16)0.35990 (12)0.0166 (4)
H31A0.47910.58410.31680.020*
C320.4881 (2)0.34828 (18)0.07941 (14)0.0247 (4)
H32A0.45910.44210.05290.037*
H32B0.50020.34410.14690.037*
H32C0.58860.28530.06270.037*
C330.0201 (2)0.24280 (19)0.03764 (15)0.0283 (5)
H33A0.09990.32020.08150.042*
H33B0.01020.15650.06050.042*
H33C0.05310.24840.02260.042*
H1N10.444 (2)0.3484 (19)0.4383 (14)0.017 (5)*
H1N20.380 (3)0.073 (2)0.4293 (18)0.047 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0181 (7)0.0174 (5)0.0193 (6)0.0094 (5)0.0047 (5)0.0057 (4)
O20.0173 (7)0.0188 (5)0.0199 (6)0.0072 (5)0.0021 (5)0.0052 (5)
O30.0247 (7)0.0154 (5)0.0263 (7)0.0094 (5)0.0056 (6)0.0030 (5)
O40.0218 (7)0.0198 (6)0.0229 (7)0.0061 (5)0.0019 (6)0.0054 (5)
N10.0127 (7)0.0118 (5)0.0167 (7)0.0046 (5)0.0074 (6)0.0016 (5)
N20.0179 (8)0.0131 (6)0.0185 (7)0.0065 (5)0.0047 (6)0.0041 (5)
C10.0124 (8)0.0148 (6)0.0152 (8)0.0056 (6)0.0059 (7)0.0043 (6)
C20.0169 (9)0.0130 (6)0.0143 (8)0.0057 (6)0.0057 (7)0.0028 (6)
C30.0189 (9)0.0161 (7)0.0157 (8)0.0067 (6)0.0039 (7)0.0023 (6)
C40.0182 (9)0.0163 (7)0.0141 (8)0.0033 (6)0.0027 (7)0.0005 (6)
C50.0205 (9)0.0140 (7)0.0171 (8)0.0070 (6)0.0079 (7)0.0009 (6)
C60.0170 (9)0.0157 (7)0.0198 (9)0.0071 (6)0.0059 (7)0.0016 (6)
C70.0149 (9)0.0141 (6)0.0146 (8)0.0056 (6)0.0075 (7)0.0027 (6)
C80.0124 (8)0.0140 (6)0.0192 (8)0.0057 (6)0.0049 (7)0.0023 (6)
C90.0133 (8)0.0115 (6)0.0145 (8)0.0047 (6)0.0027 (7)0.0022 (5)
C100.0118 (8)0.0111 (6)0.0153 (8)0.0043 (6)0.0029 (7)0.0022 (5)
C110.0116 (8)0.0121 (6)0.0159 (8)0.0044 (6)0.0019 (7)0.0018 (5)
C120.0118 (8)0.0118 (6)0.0152 (8)0.0050 (6)0.0043 (7)0.0023 (5)
C130.0123 (8)0.0130 (6)0.0138 (8)0.0041 (6)0.0046 (7)0.0011 (5)
C140.0136 (9)0.0182 (7)0.0217 (9)0.0063 (6)0.0066 (7)0.0027 (6)
C150.0159 (10)0.0246 (8)0.0242 (10)0.0069 (7)0.0023 (8)0.0014 (7)
C160.0130 (9)0.0215 (8)0.0271 (10)0.0012 (6)0.0052 (8)0.0016 (7)
C170.0215 (10)0.0133 (7)0.0222 (9)0.0034 (6)0.0087 (8)0.0011 (6)
C180.0151 (9)0.0155 (7)0.0158 (8)0.0067 (6)0.0058 (7)0.0014 (6)
C190.0170 (9)0.0133 (6)0.0168 (8)0.0073 (6)0.0065 (7)0.0034 (6)
C200.0131 (8)0.0116 (6)0.0182 (8)0.0045 (6)0.0050 (7)0.0015 (6)
C210.0167 (9)0.0184 (7)0.0172 (8)0.0070 (6)0.0034 (7)0.0030 (6)
C220.0200 (10)0.0230 (8)0.0214 (9)0.0073 (7)0.0093 (8)0.0061 (7)
C230.0175 (10)0.0316 (9)0.0305 (11)0.0087 (7)0.0103 (9)0.0082 (8)
C240.0156 (10)0.0464 (11)0.0295 (11)0.0134 (8)0.0048 (9)0.0137 (9)
C250.0162 (10)0.0321 (9)0.0238 (10)0.0113 (7)0.0078 (8)0.0125 (7)
C260.0142 (9)0.0131 (6)0.0159 (8)0.0054 (6)0.0071 (7)0.0022 (6)
C270.0159 (9)0.0161 (7)0.0189 (8)0.0051 (6)0.0048 (7)0.0028 (6)
C280.0191 (10)0.0152 (7)0.0204 (9)0.0018 (6)0.0075 (7)0.0005 (6)
C290.0273 (10)0.0137 (7)0.0237 (9)0.0075 (7)0.0150 (8)0.0031 (6)
C300.0236 (10)0.0201 (7)0.0230 (9)0.0138 (7)0.0082 (8)0.0049 (6)
C310.0160 (9)0.0150 (7)0.0188 (8)0.0064 (6)0.0049 (7)0.0010 (6)
C320.0298 (11)0.0196 (8)0.0299 (10)0.0142 (7)0.0101 (9)0.0022 (7)
C330.0230 (11)0.0236 (8)0.0314 (11)0.0083 (7)0.0082 (9)0.0013 (7)
Geometric parameters (Å, º) top
O1—C11.2189 (19)C14—C151.400 (2)
O2—C191.227 (2)C14—H14A0.9300
O3—C51.3606 (18)C15—C161.385 (3)
O3—C321.430 (2)C15—H15A0.9300
O4—C41.3704 (19)C16—C171.387 (3)
O4—C331.427 (2)C16—H16A0.9300
N1—C121.4540 (19)C17—C181.385 (2)
N1—C111.473 (2)C17—H17A0.9300
N1—H1N10.93 (2)C20—C211.395 (2)
N2—C191.3678 (19)C20—C251.398 (2)
N2—C181.411 (2)C21—C221.390 (3)
N2—H1N20.94 (3)C21—H21A0.9300
C1—C21.474 (2)C22—C231.381 (3)
C1—C91.546 (2)C22—H22A0.9300
C2—C71.382 (2)C23—C241.384 (3)
C2—C31.400 (2)C23—H23A0.9300
C3—C41.383 (2)C24—C251.390 (3)
C3—H3A0.9300C24—H24A0.9300
C4—C51.419 (3)C25—H25A0.9300
C5—C61.392 (2)C26—C271.390 (2)
C6—C71.392 (2)C26—C311.393 (2)
C6—H6A0.9300C27—C281.394 (2)
C7—C81.510 (2)C27—H27A0.9300
C8—C91.548 (2)C28—C291.382 (3)
C8—H8A0.9700C28—H28A0.9300
C8—H8B0.9700C29—C301.392 (2)
C9—C101.5529 (19)C29—H29A0.9300
C9—C121.610 (2)C30—C311.390 (2)
C10—C201.510 (2)C30—H30A0.9300
C10—C111.538 (2)C31—H31A0.9300
C10—H10A0.9800C32—H32A0.9600
C11—C261.515 (2)C32—H32B0.9600
C11—H11A0.9800C32—H32C0.9600
C12—C131.515 (2)C33—H33A0.9600
C12—C191.546 (2)C33—H33B0.9600
C13—C141.380 (2)C33—H33C0.9600
C13—C181.394 (2)
C5—O3—C32117.45 (13)C15—C14—H14A120.8
C4—O4—C33116.29 (14)C16—C15—C14120.72 (18)
C12—N1—C11107.96 (13)C16—C15—H15A119.6
C12—N1—H1N1114.7 (11)C14—C15—H15A119.6
C11—N1—H1N1113.2 (11)C15—C16—C17121.36 (16)
C19—N2—C18110.48 (13)C15—C16—H16A119.3
C19—N2—H1N2122.2 (14)C17—C16—H16A119.3
C18—N2—H1N2121.4 (14)C18—C17—C16117.18 (15)
O1—C1—C2127.74 (15)C18—C17—H17A121.4
O1—C1—C9125.95 (14)C16—C17—H17A121.4
C2—C1—C9106.31 (13)C17—C18—C13122.37 (16)
C7—C2—C3122.17 (14)C17—C18—N2127.89 (15)
C7—C2—C1108.94 (14)C13—C18—N2109.63 (14)
C3—C2—C1128.85 (16)O2—C19—N2125.76 (15)
C4—C3—C2117.96 (16)O2—C19—C12126.09 (14)
C4—C3—H3A121.0N2—C19—C12108.15 (14)
C2—C3—H3A121.0C21—C20—C25117.69 (16)
O4—C4—C3124.41 (16)C21—C20—C10119.25 (15)
O4—C4—C5115.38 (14)C25—C20—C10123.00 (16)
C3—C4—C5120.21 (15)C22—C21—C20121.40 (17)
O3—C5—C6124.50 (16)C22—C21—H21A119.3
O3—C5—C4114.75 (14)C20—C21—H21A119.3
C6—C5—C4120.74 (14)C23—C22—C21119.83 (18)
C5—C6—C7118.61 (16)C23—C22—H22A120.1
C5—C6—H6A120.7C21—C22—H22A120.1
C7—C6—H6A120.7C22—C23—C24119.96 (19)
C2—C7—C6120.14 (15)C22—C23—H23A120.0
C2—C7—C8111.20 (13)C24—C23—H23A120.0
C6—C7—C8128.63 (16)C23—C24—C25120.06 (19)
C7—C8—C9103.46 (13)C23—C24—H24A120.0
C7—C8—H8A111.1C25—C24—H24A120.0
C9—C8—H8A111.1C24—C25—C20121.04 (18)
C7—C8—H8B111.1C24—C25—H25A119.5
C9—C8—H8B111.1C20—C25—H25A119.5
H8A—C8—H8B109.0C27—C26—C31119.13 (14)
C1—C9—C8102.10 (13)C27—C26—C11121.23 (15)
C1—C9—C10112.78 (12)C31—C26—C11119.62 (14)
C8—C9—C10117.99 (14)C26—C27—C28120.29 (17)
C1—C9—C12105.46 (13)C26—C27—H27A119.9
C8—C9—C12114.60 (12)C28—C27—H27A119.9
C10—C9—C12103.53 (12)C29—C28—C27120.33 (16)
C20—C10—C11115.67 (13)C29—C28—H28A119.8
C20—C10—C9115.57 (13)C27—C28—H28A119.8
C11—C10—C9105.43 (12)C28—C29—C30119.71 (15)
C20—C10—H10A106.5C28—C29—H29A120.1
C11—C10—H10A106.5C30—C29—H29A120.1
C9—C10—H10A106.5C31—C30—C29119.96 (17)
N1—C11—C26111.09 (14)C31—C30—H30A120.0
N1—C11—C10100.59 (12)C29—C30—H30A120.0
C26—C11—C10112.87 (13)C30—C31—C26120.55 (16)
N1—C11—H11A110.6C30—C31—H31A119.7
C26—C11—H11A110.6C26—C31—H31A119.7
C10—C11—H11A110.6O3—C32—H32A109.5
N1—C12—C13112.92 (14)O3—C32—H32B109.5
N1—C12—C19114.28 (13)H32A—C32—H32B109.5
C13—C12—C19100.96 (12)O3—C32—H32C109.5
N1—C12—C9102.56 (12)H32A—C32—H32C109.5
C13—C12—C9116.62 (13)H32B—C32—H32C109.5
C19—C12—C9110.00 (13)O4—C33—H33A109.5
C14—C13—C18119.81 (15)O4—C33—H33B109.5
C14—C13—C12131.21 (14)H33A—C33—H33B109.5
C18—C13—C12108.86 (14)O4—C33—H33C109.5
C13—C14—C15118.43 (15)H33A—C33—H33C109.5
C13—C14—H14A120.8H33B—C33—H33C109.5
O1—C1—C2—C7162.86 (17)C10—C9—C12—C13137.35 (14)
C9—C1—C2—C717.63 (18)C1—C9—C12—C19132.81 (13)
O1—C1—C2—C319.4 (3)C8—C9—C12—C1921.35 (17)
C9—C1—C2—C3160.08 (17)C10—C9—C12—C19108.52 (13)
C7—C2—C3—C40.8 (3)N1—C12—C13—C1442.9 (2)
C1—C2—C3—C4178.21 (17)C19—C12—C13—C14165.38 (18)
C33—O4—C4—C325.8 (3)C9—C12—C13—C1475.5 (2)
C33—O4—C4—C5153.32 (16)N1—C12—C13—C18132.94 (15)
C2—C3—C4—O4176.31 (16)C19—C12—C13—C1810.49 (17)
C2—C3—C4—C52.8 (3)C9—C12—C13—C18108.63 (16)
C32—O3—C5—C63.4 (3)C18—C13—C14—C153.3 (3)
C32—O3—C5—C4177.80 (15)C12—C13—C14—C15178.79 (17)
O4—C4—C5—O32.8 (2)C13—C14—C15—C160.3 (3)
C3—C4—C5—O3178.02 (16)C14—C15—C16—C172.1 (3)
O4—C4—C5—C6176.01 (16)C15—C16—C17—C181.3 (3)
C3—C4—C5—C63.2 (3)C16—C17—C18—C131.8 (3)
O3—C5—C6—C7178.60 (16)C16—C17—C18—N2174.15 (17)
C4—C5—C6—C70.1 (3)C14—C13—C18—C174.1 (3)
C3—C2—C7—C64.0 (3)C12—C13—C18—C17179.45 (16)
C1—C2—C7—C6178.06 (15)C14—C13—C18—N2172.44 (16)
C3—C2—C7—C8177.88 (16)C12—C13—C18—N23.98 (19)
C1—C2—C7—C80.0 (2)C19—N2—C18—C17170.80 (18)
C5—C6—C7—C23.6 (3)C19—N2—C18—C135.5 (2)
C5—C6—C7—C8178.69 (16)C18—N2—C19—O2167.44 (17)
C2—C7—C8—C917.35 (18)C18—N2—C19—C1212.43 (19)
C6—C7—C8—C9164.79 (17)N1—C12—C19—O244.6 (2)
O1—C1—C9—C8153.34 (17)C13—C12—C19—O2166.11 (17)
C2—C1—C9—C827.14 (16)C9—C12—C19—O270.1 (2)
O1—C1—C9—C1025.7 (2)N1—C12—C19—N2135.26 (15)
C2—C1—C9—C10154.77 (14)C13—C12—C19—N213.76 (17)
O1—C1—C9—C1286.59 (19)C9—C12—C19—N2110.03 (15)
C2—C1—C9—C1292.93 (14)C11—C10—C20—C21146.90 (14)
C7—C8—C9—C126.21 (15)C9—C10—C20—C2189.24 (18)
C7—C8—C9—C10150.44 (14)C11—C10—C20—C2535.7 (2)
C7—C8—C9—C1287.24 (15)C9—C10—C20—C2588.16 (19)
C1—C9—C10—C20104.01 (17)C25—C20—C21—C220.2 (2)
C8—C9—C10—C2014.7 (2)C10—C20—C21—C22177.77 (14)
C12—C9—C10—C20142.51 (14)C20—C21—C22—C230.7 (3)
C1—C9—C10—C11126.92 (15)C21—C22—C23—C241.1 (3)
C8—C9—C10—C11114.35 (16)C22—C23—C24—C250.5 (3)
C12—C9—C10—C1113.44 (16)C23—C24—C25—C200.5 (3)
C12—N1—C11—C26166.16 (13)C21—C20—C25—C240.8 (3)
C12—N1—C11—C1046.44 (15)C10—C20—C25—C24178.29 (16)
C20—C10—C11—N1164.04 (12)N1—C11—C26—C27135.61 (16)
C9—C10—C11—N135.03 (15)C10—C11—C26—C27112.28 (18)
C20—C10—C11—C2677.52 (17)N1—C11—C26—C3146.1 (2)
C9—C10—C11—C26153.47 (14)C10—C11—C26—C3166.0 (2)
C11—N1—C12—C13164.04 (13)C31—C26—C27—C280.5 (3)
C11—N1—C12—C1981.30 (17)C11—C26—C27—C28177.73 (16)
C11—N1—C12—C937.70 (16)C26—C27—C28—C291.0 (3)
C1—C9—C12—N1105.23 (13)C27—C28—C29—C301.8 (3)
C8—C9—C12—N1143.31 (13)C28—C29—C30—C311.1 (3)
C10—C9—C12—N113.44 (15)C29—C30—C31—C260.4 (3)
C1—C9—C12—C1318.68 (17)C27—C26—C31—C301.2 (3)
C8—C9—C12—C1392.78 (17)C11—C26—C31—C30177.07 (16)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C26–C31, C20–C25 and C13–C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.94 (2)1.94 (2)2.8559 (19)164 (2)
C8—H8B···O20.972.493.214 (2)131
C11—H11A···O20.982.553.148 (2)119
C22—H22A···O4ii0.932.593.471 (2)159
N1—H1N1···Cg2iii0.93 (2)2.55 (2)3.4518 (17)161.7 (16)
C17—H17A···Cg3iv0.932.813.5609 (18)139
C28—H28A···Cg4iii0.932.923.501 (2)121
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC33H28N2O4
Mr516.57
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.2746 (12), 10.6337 (15), 14.4279 (19)
α, β, γ (°)92.369 (3), 98.557 (3), 115.341 (2)
V3)1262.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.19 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.976, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
20001, 7399, 4778
Rint0.054
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.05
No. of reflections7399
No. of parameters360
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C26–C31, C20–C25 and C13–C18 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.94 (2)1.94 (2)2.8559 (19)164 (2)
C8—H8B···O20.972.493.214 (2)131
C11—H11A···O20.982.553.148 (2)119
C22—H22A···O4ii0.932.593.471 (2)159
N1—H1N1···Cg2iii0.93 (2)2.55 (2)3.4518 (17)161.7 (16)
C17—H17A···Cg3iv0.932.813.5609 (18)139
C28—H28A···Cg4iii0.932.923.501 (2)121
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti of Sains Malysia (USM) for providing research facilities. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160 and CSY thanks USM for the award of a USM Fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCui, C.-B., Kakeya, H. & Osada, H. (1996). Tetrahedron, 52, 12651–12666.  CrossRef CAS Web of Science Google Scholar
First citationDaly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 49, 265–280.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKirsch, G., Hesse, S. & Comel, A. (2004). Curr. Org. Chem. 1, 47–63.  CAS Google Scholar
First citationKlumpp, D. A., Yeung, K. Y., Prakash, G. K. S. & Olah, G. A. (1998). J. Org. Chem. 63, 4481–4484.  Web of Science CrossRef CAS Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationNájera, C. N. & Sansano, J. M. (2005). Angew. Chem. 117, 6428–6432.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F., Mancuso, R. & Larock, R. C. (2009). Tetrahedron Lett. 50, 4067–4070.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, J., Zhang, Y., Wang, X.-I., Fun, H. K. & Xu, J.-H. (2000). Org. Lett. 2, 2583–2586.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2533-o2534
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds